Skip to main content

Empirical Process Methods in Probability in Banach Spaces

  • Chapter
Probability in Banach Spaces

Part of the book series: Ergebnisse der Mathematik und ihrer Grenzgebiete ((CLASSICS,volume 23))

  • 7269 Accesses

Abstract

The purpose of this chapter is to present applications of the random process techniques developed so far to infinite dimensional limit theorems, and in particular to the central limit theorem (CLT). More precisely, we will be interested for example in the CLT in the space C(T) of continuous functions on a compact metric space T. Since C(T) is not well behaved with respect to the type or cotype 2 properties, we will rather have to seek for nice classes of random variables in C(T) for which a central limit property can be established. This point of view leads to enlarge this framework and to investigate limit theorems for empirical measures or processes. Random geometric descriptions of the CLT may then be produced via this approach, as well as complete descriptions for nice classes of functions (indicator functions of some sets) on which the empirical processes are indexed. While these random geometric descriptions do not solve the central limit problem in infinite dimension (and are probably of little use in applications), however, they clearly describe the main difficulties inherent to the problem from the empirical point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. E. Giné, J. Zinn: Some limit theorems for empirical processes. Ann. Probab. 12, 929–989 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Giné, J. Zinn: Lectures on the central limit theorem for empirical processes. Probability and Bausch Spaces, Zaragoza (Spain)Lecture Notes in Mathematics, vol. 1221. Springer, Berlin Heidelberg 1986, pp. 50113

    Google Scholar 

  3. R. Dudley: Central limit theorems for empirical measures. Ann. Probab. 6, 899–929 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Gaenssler: Empirical processes. Inst. Math. Statist. Lecture Notes Monograph Series, vol. 3, 1983

    Google Scholar 

  5. R. Dudley: A course on empirical processes. Ecole d’Eté de Probabilités de St-Flour 1982. Lecture Notes in Mathematics, vol. 1097. Springer, Berlin Heidelberg 1984, pp. 2–142

    Google Scholar 

  6. D. Pollard: Convergence of stochastic processes. Springer, Berlin Heidelberg 1984

    Book  MATH  Google Scholar 

  7. N. C. Jain, M. B. Marcus: Central limit theorem for C(S)-valued random variables. J. Funct. Anal. 19, 216–231 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Dudley, V. Strassen: The central limit theorem and e-entropy. Probability and Information Theory. Lecture Notes in Mathematics, vol. 89. Springer, Berlin Heidelberg 1969, pp. 224–231

    Google Scholar 

  9. E. Giné: On the central limit theorem for sample continuous processes. Ann. Probab. 2, 629–641 (1974)

    Article  MATH  Google Scholar 

  10. B. Heinkel: Mesures majorantes et le théorème de la limite centrale dans C(S). Z. Wahrscheinlichkeitstheor. Verw. Geb. 38, 339–351 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Zinn: A note on the central limit theorem in Banach spaces. Ann. Probab. 5, 283–286 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. N. T. Andersen, E. Giné, M. Ossiander, J. Zinn: The central limit theorem and the law of the iterated logarithm for empirical processes under local conditions. Probab. Theor. Rel. Fields 77, 271–305 (1988)

    Article  MATH  Google Scholar 

  13. J. K. Matsak, A. N. Plitchko: Central limit theorem in Banach space. Ukrainian Math. J. 40, 234–239 (1988)

    MATH  Google Scholar 

  14. V. Paulauskas: On the central limit theorem in the Banach space co.Probab. Math. Statist. 3, 127–141 (1984)

    MathSciNet  Google Scholar 

  15. M. Ossiander: A central limit theorem under metric entropy with L2-bracketing. Ann. Probab. 15, 897–919 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. N. T. Andersen, E. Giné, J. Zinn: The central limit theorem under local conditions: the case of Radon infinitely divisible limits without Gaussian components. Trans. Amer. Math. Soc. 309, 1–34 (1988)

    Article  MathSciNet  Google Scholar 

  17. M. Ledoux, M. Talagrand: Comparison theorems, random geometry and some limit theorems for empirical processes. Ann. Probab. 17, 596–631 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Ledoux: Loi du logarithme itéré dans C(S)et function caractéristique empirique. Z. Wahrscheinlichkeitstheor. Verw. Geb. 60, 425–435 (1982)

    Google Scholar 

  19. B. Heinkel: Some exponential inequalities with applications to the central limit theorem in C[0,1]. Probability in Banach Spaces 6, Sandbjerg (Denmark)Progress in Probability, vol. 20. Birkhäuser, Basel 1990, pp. 162–184

    Google Scholar 

  20. B. Heinkel: Rearrangements of sequences of random variables and exponential inequalities. (1988), to appear in Probab. Math. Statist.

    Google Scholar 

  21. M. B. Marcus, G. Pisier: Some results on the continuity of stable processes and the domain of attraction of continuous stable processes. Ann. Inst. H. Poincaré 20, 177–199 (1984)

    MathSciNet  MATH  Google Scholar 

  22. M. Talagrand: Donsker classes and random geometry. Ann. Probab. 15, 1327–1338 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Talagrand: Donsker classes of sets. Probab. Theor. Rel. Fields 78, 169191 (1988)

    Google Scholar 

  24. V. N. Vapnik, A. Y. Chervonenkis: Necessary and sufficient conditions for the uniform convergence of means to their expectations. Theor. Probab. Appl. 26, 532–553 (1981)

    Article  MathSciNet  Google Scholar 

  25. V. N. Vapnik, A. Y. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities. Theor. Probab. Appl. 16, 264280 (1971)

    Google Scholar 

  26. J. Kuelbs, R. Dudley: Log log laws for empirical measures. Ann. Probab. 8, 405–418 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Dudley, W. Philipp: Invariance principle for sums of Banach space valued random elements and empirical processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 62, 509–552 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Pisier: Remarques sur les classes de Vapnik-Cervonenkis. Ann. Inst. H. Poincaré 20, 287–298 (1984)

    MathSciNet  MATH  Google Scholar 

  29. N. Sauer: On the density of families of sets. J. Comb. Theor. 13, 145–147 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Shelah: A combinatorial problem: stability and order for models and theories in infinitary langages. Pacific J. Math. 41, 247–261 (1972)

    MATH  Google Scholar 

  31. P. Frankl: On the trace of finite sets. J. Comb. Theory 34, 41–45 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Durst, R. Dudley: Empirical processes, Vapnik-Cervonenkis classes and Poisson processes. Probab. Math. Statist. 1, 109–115 (1981)

    Google Scholar 

  33. E. Giné, J. Zinn: Gaussian characterization of uniform Donsker classes of functions. (1989), to appear in Ann. Probab.

    Google Scholar 

  34. J. Zinn: Universal Donsker classes and type 2. Probability in Banach Spaces 6, Sandbjerg (Denmark)1986. Progress in Probability, vol. 20. Birkhäuser, Basel 1990, pp. 283–288

    Google Scholar 

  35. K. Alexander: The central limit theorem for empirical processes on Vapnik- Cervonenkis classes. Ann. Probab. 15, 178–203 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. K. Alexander, M. Talagrand: The law of the iterated logarithm for empirical processes on Vapnik-Cervonenkis classes. J. Multivariate Anal. 30, 155–166 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ledoux, M., Talagrand, M. (1991). Empirical Process Methods in Probability in Banach Spaces. In: Probability in Banach Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20212-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20212-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20211-7

  • Online ISBN: 978-3-642-20212-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics