Skip to main content

The Law of the Iterated Logarithm

  • Chapter
  • 7243 Accesses

Part of the book series: Ergebnisse der Mathematik und ihrer Grenzgebiete ((CLASSICS,volume 23))

Abstract

This chapter is devoted to the classical laws of the iterated logarithm of Kolmogorov and Hartman-Wintner-Strassen in the vector valued setting. These extensions both enlighten the scalar statements and describe various new interesting phenomena in the infinite dimensional setting. As in the previous chapter on the strong law of large numbers, the isoperimetric approach proves to be an efficient tool in this study. The main results described here show again how the strong almost sure statement of the law of the iterated logarithm reduces to the corresponding (necessary) statement in probability, under moment conditions similar to those of the scalar case.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. M. Ledoux, M. Talagrand: Characterization of the law of the iterated logarithm in Banach spaces. Ann. Probab. 16, 1242–1264 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Ledoux, M. Talagrand: Some applications of isoperimetric methods to strong limit theorems for sums of independent random variables. Ann. Probab. 18, 754–789 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. N. H. Bingham. Variants on the law of the iterated logarithm. Bull. London Math. Soc. 18, 433–467 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. N. Kolmogorov: Über das Gesetz des iterieten Logarithmus. Math. Ann. 101, 126–135 (1929)

    Article  MathSciNet  Google Scholar 

  5. W. Stout: Almost sure convergence. Academic Press, New York 1974

    MATH  Google Scholar 

  6. M. Ledoux, M. Talagrand: Comparison theorems, random geometry and some limit theorems for empirical processes. Ann. Probab. 17, 596–631 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Kuelbs: Kolmogorov’s law of the iterated logarithm for Banach space valued random variables. Illinois J. Math. 21, 784–800 (1977)

    MathSciNet  MATH  Google Scholar 

  8. P. Hartman, A. Wintner: On the law of the iterated logarithm. Amer. J. Math. 63, 169–176 (1941)

    Article  MathSciNet  Google Scholar 

  9. V. Strassen: A converse to the law of the iterated logarithm. Z. Wahrscheinlichkeitstheor. Verw. Geb. 4, 265–268 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Feller: An extension of the law of the iterated logarithm to variables without variances. J. Math. Mechanics 18, 343–355 (1968)

    MathSciNet  MATH  Google Scholar 

  11. V. Strassen: An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheor. Verw. Geb. 3, 211–226 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. de Acosta: A new proof of the Hartman-Wintner law of the iterated logarithm. Ann. Probab. 11, 270–276 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Kuelbs: The law of the iterated logarithm and related strong convergence theorems for Banach space valued random variables. Ecole d’Eté de Probabilités de St-Flour 1975. Lecture Notes in Mathematics, vol. 539. Springer, Berlin Heidelberg 1976, pp. 225–314

    Google Scholar 

  14. J. Kuelbs: A strong convergence theorem for Banach space valued random variables. Ann. Probab. 4, 744–771 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Pisier: Le théorème de la limite centrale et la loi du logarithme itéré dans les espaces de Banach. Séminaire Maurey-Schwartz 1975–76. Ecole Polytechnique, Paris 1976

    Google Scholar 

  16. V. Goodman, J. Kuelbs, J. Zinn: Some results on the LIL in Banach space with applications to weighted empirical processes. Ann. Probab. 9, 713–752 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. LePage: Log log laws for Gaussian processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 25, 103–108 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Wahrscheinlichkeitstheor. Verw. Geb. 41, 289–304 (1978)

    Google Scholar 

  19. A. de Acosta, J. Kuelbs: Some results on the cluster set C({S,l/an})and the LIL. Ann. Probab. 11, 102–122 (1983)

    Google Scholar 

  20. M. Ledoux: Sur les théorèmes limites dans certains espaces de Banach lisses. Probability in Banach Spaces IV, Oberwolfach 1982. Lecture Notes in Mathematics, vol. 990. Springer, Berlin Heidelberg 1983. pp. 150–169

    Google Scholar 

  21. M. Ledoux: The law of the iterated logarithm in uniformly convex Banach spaces. Trans. Amer. Math. Soc. 294, 351–365 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Pisier: Sur la loi du logarithme itéré dans les espaces de Banach. Proba- bility in Banach Spaces, Oberwolfach 1975. Lecture Notes in Mathematics, vol. 526. Springer, Berlin Heidelberg 1976, pp. 203–210

    Google Scholar 

  23. M. Ledoux: Gaussian randomization and the law of the iterated logarithm in type 2 Banach spaces. Unpublished manuscript (1985)

    Google Scholar 

  24. B. Heinkel: Relation entre théorème central-limite et loi du logarithme itéré dans les espaces de Banach. Z. Wahrscheinlichkeitstheor. Verw. Geb.. 41, 211–220 (1979)

    Article  MathSciNet  Google Scholar 

  25. K. Alexander: Characterization of the cluster set of the LIL sequence in Banach spaces. Ann. Probab. 17, 737–759 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Alexander: Unusual cluster sets for the LIL sequence in Banach spaces. Ann. Probab. 17, 1170–1185 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Kuelbs: When is the cluster set of S n /a n empty ? Ann. Probab. 9, 377–394 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. A. de Acosta, J. Kuelbs, M. Ledoux: An inequality for the law of the iterated logarithm. Probability in Banach Spaces IV, Oberwolfach 1982. Lecture Notes in Mathematics, vol. 990. Springer, Berlin Heidelberg 1983, pp. 1–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ledoux, M., Talagrand, M. (1991). The Law of the Iterated Logarithm. In: Probability in Banach Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20212-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20212-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20211-7

  • Online ISBN: 978-3-642-20212-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics