Skip to main content

Nanofluids: Properties, Applications and Sustainability Aspects in Materials Processing Technologies

  • Conference paper
  • First Online:
Advances in Sustainable Manufacturing

Abstract

Nanofluids could be used to provide cooling and lubrication action and to control thermo-physical and tribochemical properties of material processing. It is foreseen that properly designed nanofluids could surpass conventional cutting fluids with respect to thermal conductivity, convective heat transfer coefficient, critical heat flux, viscosity, and wettability. These properties have a promising potential to lead to the development of new coolants and lubricants with applications in a wide variety of materials processing technologies. This paper analyses the developments in research on the properties of nanofluids and evaluates their potential for applications in machining, focusing on their thermal and tribological aspects. The increasing use of nanofluids leads to a need for information on their sustainability in order to recognize and avoid risks. Sustainability is discussed in view of occupational health and safety and toxicity of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astakhov, V. P., 2006, Tribology of Metal Cutting, Tribology and Interface Engineering Series, 52, Elsevier Ltd, Oxford.

    Google Scholar 

  2. Stephenson, D. A., Agapiou, J. S., 2006, Metal Cutting Theory and Practice, CRC Press, Boca Raton.

    Google Scholar 

  3. Merchant, M. E., 1950, Fundamentals of Cutting Fluid Action, Lubrication Engineering, 6:163.

    Google Scholar 

  4. Yu, W., France, D. M., Routbort, J. L., Choi, S. U. S., 2008, Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Engineering, 29/5: 432–460.

    Article  Google Scholar 

  5. Que, Q., Zhang, J., Zhang, Z., 1997, Synthesis, Structure and Lubricating Properties of Dialkyldithiophosphate-modified Mo-S Compound Nanoclusters, Wear, 209:8–12.

    Article  Google Scholar 

  6. Li, J. F., Liao, H., Wang, X. Y., Normand, B., Ji, V., Ding, C. X., Coddet, C., 2004, Improvement in Wear Resistance of Plasma Sprayed Yttria Stabilized Zirconia Coating Using Nanostructured Powder, Tribology International, 37:77–84.

    Article  Google Scholar 

  7. Aitken, R. J., Chaudhry, M. C., Boxall, A. B. A., Hull, M., 2006, Manufacture and Use of Nanomaterials: Current Status in the UK and Global Trends, Occupational Medicine, 56:300–306.

    Article  Google Scholar 

  8. Maynard, A. D., Baron, P. A., Foley, M., Shvedova, A. A., Kisin, E. R., Castranova, V., 2004, Exposure to Carbon Nanotube Material: Aerosol Release During the Handling of Unrefined Singlewalled Carbon Nanotube Material, Journal of Toxicology and Environmental Health, 67:87–107.

    Article  Google Scholar 

  9. Vollath, D., 2008, Nanomaterials: An Introduction to Synthesis, Properties and Applications, Willey-VCH, Weinheim.

    Google Scholar 

  10. Das, S. K., Choi, S. U. S., Yu, W., Pradeep, T., 2008, Nanofluids: Science and Technology, John Willey and Sons, Inc., Hoboken.

    Google Scholar 

  11. Yu, W., France, D. M., Routbort, J. L., Choi, S. U. S., 2008, Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Engineering, 29/5:432–460.

    Article  Google Scholar 

  12. Hamilton, R. L., Crosser, O. K., 1962, Thermal Conductivity of Heterogeneous Two-Component Systems, Industrial and Engineering Chemistry, 1/3:187–191.

    Google Scholar 

  13. Lee, S., Choi, S. U. S., Li, S., Eastman, J. A., 1999, Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, Journal of Heat Transfer, 121: 280–289.

    Article  Google Scholar 

  14. Chon, C. H., Kihm, K. D., Lee, S. P., Choi, S. U. S., 2005, Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement, Applied Physics Letters, 87:153107.

    Article  Google Scholar 

  15. Das, S. K., Putra, N., Thiesen, P., Roetzel, W., 2003, Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, Journal of Heat Transfer, 125:567–574.

    Article  Google Scholar 

  16. Xie, H., Wang, J., Xi, T., Liu, Y., 2002, Thermal Conductivity of Suspensions Containing Nanosized SiC Particles, International Journal of Thermophysics, 23:571–580.

    Article  Google Scholar 

  17. Silliman, J. D., 1992, Cutting and Grinding Fluids: Selection and Application, Society of Manufacturing Engineers, Dearborn.

    Google Scholar 

  18. Weinert, K., Inasaki, I., Sutherland, J. W., Wakabayashi, T., 2004, Dry Machining and Minimum Quantity Lubrication, CIRP Annals - Manufacturing Technology, 53/2:511–537.

    Article  Google Scholar 

  19. Childs, T. H. C., 2006, Friction Modelling in Metal Cutting, Wear, 260:310–318.

    Article  Google Scholar 

  20. Kitagawa, T., Kubo, A., Maekawa, K., 1997, Temperature and Wear of Cutting Tools in High-Speed Machining of Inconel 718 and Ti-6A1-6V-2Sn, Wear, 202:142–148.

    Article  Google Scholar 

  21. Settineri, L., Faga, M. G., Lerga, B., 2008, Properties and Performances of Innovative Coated Tools for Turning Inconel, International Journal of Machine Tools and Manufacture, 48:815–823.

    Article  Google Scholar 

  22. Itoigawa, F., Childs, T. H. C., Nakamura, T., Belluco, W., 2006, Effects and Mechanisms in Minimal Quantity Lubrication Machining of an Aluminum Alloy, Wear, 260:339–344.

    Article  Google Scholar 

  23. Rapoport, L., Nepomnyashchy, O., Lapsker, I., Verdyan, A., Moshkovich, A., Feldman, Y., Tenne, R., 2005, Behavior of Fullerene-Like WS2 Nanoparticles Under Severe Contact Conditions, Wear, 259:703–707.

    Article  Google Scholar 

  24. Min, S., lnasaki, I., Fujimura, S., Wada, T., Suda, S., Wakabayashi, T., A Study on Tribology in Minimal Quantity Lubrication Cutting, 2005, CIRP Annals - Manufacturing Technology, 54/1:105–108.

    Google Scholar 

  25. Shen, B., Minimum Quantity Lubrication Grinding Using Nanofluids (Doctoral dissertation), 2008, University of Michigan.

    Google Scholar 

  26. Alberts, M., Kalaitzidou, K., Melkote, S., 2009, An Investigation of Graphite Nanoplatelets as Lubricant in Grinding, International Journal of Machine Tools and Manufacture, 49:966–970.

    Article  Google Scholar 

  27. Malkin, S., Guo, C., 2007, Thermal Analysis of Grinding, CIRP Annals - Manufacturing Technology, 56/2:760–782.

    Article  Google Scholar 

  28. Jin, T., Stephenson, D. J., 2008, A Study of the Convection Heat Transfer Coefficients of Grinding Fluids, CIRP Annals - Manufacturing Technology, 57/1: 367–370.

    Article  Google Scholar 

  29. Howes, T. D., Neailey, K., Harrison, A. J., 1987, Fluid Film Boiling in Shallow-cut Grinding, CIRP Annals - Manufacturing Technology, 36/1:223–226.

    Article  Google Scholar 

  30. Vassallo, P., Kuman, R., Amico, S. D., 2004, Pool Boiling Heat Transfer Experiments in Silica-Water Nanofluids, International Journal of Heat and Mass Transfer, 47:407–411.

    Article  Google Scholar 

  31. Kim, S. J., Bang, I. C., Buongiorno, J., Hu, L. W., 2007, Surface Wettability Change During Pool Boiling of Nanofluids and its Effect on Critical Heat Flux, International Journal of Heat and Mass Transfer, 50:4105–4116.

    Article  Google Scholar 

  32. Rial-González, E., Copsey, S., Paoli, P., Schneider, E., 2005, Priorities for Occupational Safety and Health Research in the EU-25, European Agency for Safety and Health at Work, Luxembourg.

    Google Scholar 

  33. Sutherland, J. W., Kulur, V. N., King, N. C., von Turkovich, B. F., 2000, An Experimental Investigation of Air Quality in Wet and Dry Turning, CIRP Annals - Manufacturing Technology, 49/1: 61–64.

    Article  Google Scholar 

  34. Health and Safety Executive, Health Effects of Particles Produced for Nanotechnologies, 2004, Retrieved July 1, 2010, from http://www.hse.gov.uk.

    Google Scholar 

  35. Jeng, H. A., Swanson, J., 2006, Toxicity of Metal Oxide Nanoparticles in Mammalian Cells, Journal of Environmental Science and Health, 41/12:2699–2711.

    Google Scholar 

  36. Wang, J., Liu, Y., Jiao, F., Lao, F., Li, W., Gu, Y., Li, Y., Ge, C., Zhou, G., Li, B., Zhao, Y., Chai, Z., Chen, C., 2008, Time-dependent Translocation and Potential Impairment on Central Nervous System by Intranasally Instilled TiO2 Nanoparticles, Toxicology, 254/1-2:82–90.

    Article  Google Scholar 

  37. Hurt, R. H., Monthioux, M., Kane, A., 2006, Toxicology of Carbon Nanomaterials: Status, Trends, and Perspectives on the Special Issue, Carbon, 44/6: 1028–1033.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krajnik, P., Pusavec, F., Rashid, A. (2011). Nanofluids: Properties, Applications and Sustainability Aspects in Materials Processing Technologies. In: Seliger, G., Khraisheh, M., Jawahir, I. (eds) Advances in Sustainable Manufacturing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20183-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20183-7_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20182-0

  • Online ISBN: 978-3-642-20183-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics