Skip to main content

Experimental Study of the Fluctuation-Governed Resistive State in Quasi-One-Dimensional Superconductors

  • Chapter
  • First Online:
Fundamentals of Superconducting Nanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

  • 1271 Accesses

Abstract

Physical properties of quasi-one-dimensional superconducting channels (nanowires) can differ significantly from those of bulk superconductors. The reason behind is the impact of thermal and quantum fluctuations. In the particular case of resistive measurements the fluctuations may significantly broaden the superconducting transition R(T). Here we review the activities in the field with main emphasis on experiment, while brief theoretical background is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Larkin, A. Varlamov, Theory of Fluctuations in Superconductors (Clarendon, Oxford, 2005)

    MATH  Google Scholar 

  2. K.Yu. Arutyunov, D.G. Golubev, A. Zaikin, Phys. Rep. 464, 1 (2008). DOI 10.1016/j.physrep.2008.04.009

    Article  ADS  Google Scholar 

  3. L. Aslamazov, A. Larkin, Fiz. Tverd. Tela 10, 1140 (1968)

    Google Scholar 

  4. K. Maki, Prog. Theor. Phys. 39, 897 (1968)

    Article  ADS  Google Scholar 

  5. R. Thompson, Phys. Rev. B 1, 327 (1970)

    Article  ADS  Google Scholar 

  6. W. Little, Phys. Rev. 156, 396 (1967)

    Article  ADS  Google Scholar 

  7. J. Meyer, G. Minnegerode, Phys. Lett. 38A, 529 (1972)

    ADS  Google Scholar 

  8. R. Tidecks, Current-Induced Nonequilibrium Phenomena in Quasi-One-Dimensional Superconductors (Springer, New York, 1990)

    Google Scholar 

  9. J. Langer, V. Ambegaokar, Phys. Rev. 164, 498 (1967)

    Article  ADS  Google Scholar 

  10. D. McCumber, B. Halperin, Phys. Rev. B 1, 1054 (1970)

    Article  ADS  Google Scholar 

  11. A.D. Zaikin, D.S. Golubev, A. van Otterlo, G.T. Zimányi, Phys. Rev. Lett. 78(8), 1552 (1997). DOI 10.1103/PhysRevLett.78.1552

    Article  ADS  Google Scholar 

  12. A.D. Zaikin, D.S. Golubev, A. van Otterlo, G. Zimanyi, PUsp. Fiz. Nauk 168, 244 (1998)

    Google Scholar 

  13. D. Golubev, A. Zaikin, Phys. Rev. B 64, 014504 (2001)

    Article  ADS  Google Scholar 

  14. K.Y. Arutyunov, Recent Patents Nanotechnol. 1(1), 129 (2007)

    Article  Google Scholar 

  15. E.I. Givargizov, Highly Anisotropic Crystals, Series: Material Science of Minerals and Rocks (Springer, Germany, 1987)

    Google Scholar 

  16. R.M. Fisher, L.S. Darken, K.G. Carrol, Acta Metallurgica 2, 368 (1954)

    Article  Google Scholar 

  17. O.S. Lutes, Phys. Rev. 105, 1451 (1957)

    Article  ADS  Google Scholar 

  18. J.E. Lukens, R.J. Warburton, W.W. Webb, Phys. Rev. Lett. 25(17), 1180 (1970). DOI 10.1103/PhysRevLett.25.1180

    Article  ADS  Google Scholar 

  19. R.S. Newbower, M.R. Beasley, M. Tinkham, Phys. Rev. B 5(3), 864 (1972). DOI 10.1103/PhysRevB.5.864

    Google Scholar 

  20. Yu. P. Gaidukov, N.P. Danilova, and R. Sh. Georgius-Mankarius, Sov.Phys. JETP, 66, 605 (1987)

    Google Scholar 

  21. K.Y. Arutyunov, T.V. Ryynänen, J.P. Pekola, A.B. Pavolotski, Phys. Rev. B 63(9), 092506 (2001). DOI 10.1103/PhysRevB.63.092506

    Google Scholar 

  22. A. Bezryadin, A. Bollinger, D. Hopkins, M. Murphey, M. Remeika, A. Rogachev, Dekker Encyclopedia of Nanoscience and Nanotechnology (Dekker, 2004)

    Google Scholar 

  23. D.S. Hopkins, D. Pekker, P.M. Goldbart, A. Bezryadin, Science 308, 1762 (2005)

    Article  ADS  Google Scholar 

  24. M. Remeika, A. Bezryadin, Nanotechnology 16, 1172 (2005)

    Article  ADS  Google Scholar 

  25. A. Johansson, G. Sambandamurthy, D. Shahar, N. Jacobson, R. Tenne, Phys. Rev. Lett 95, 116805 (2005)

    Article  ADS  Google Scholar 

  26. N. Giordano, Phys. Rev. Lett. 61, 2137 (1988)

    Article  ADS  Google Scholar 

  27. N. Giordano, E.R. Shuler, Phys. Rev. Lett. 63, 2417 (1989)

    Article  ADS  Google Scholar 

  28. S. Sharifi, A.V. Herzog, R.C. Dynes, Phys. Rev. Lett. 71, 428 (1993)

    Article  ADS  Google Scholar 

  29. A.V. Herzog, P. Xiong, S. Sharifi, R.C. Dynes, Phys. Rev. Lett. 76, 668 (1996)

    Article  ADS  Google Scholar 

  30. F. Altomare, A.M. Chang, M.R. Melloch, Y. Hong, C.W. Tu, Phys. Rev. Lett 97, 017001 (2006)

    Article  ADS  Google Scholar 

  31. M. Savolainen, V. Touboltsev, P. Koppinen, K.P. Riikonen, K. Arutyunov, Appl. Phys. Mater. Sci. Process 79, 1769 (2004). URL http://dx.doi.org/10.1007/s00339-004-2709-8. 10.1007/s00339-004-2709-8

    Google Scholar 

  32. M. Zgirski, K.P. Riikonen, V. Tuboltsev, P. Jalkanen, T.T. Hongisto, K.Y. Arutyunov, Nanotechnology 19(5), 055301 (2008). URL http://stacks.iop.org/0957-4484/19/i=5/a=055301

    Google Scholar 

  33. M. Zgirski, K.-P. Riikonen, V. Touboltsev, K. Arutyunov, Nano Lett. 5(6), 1029 (2005)

    Article  ADS  Google Scholar 

  34. M. Zgirski, K.-P. Riikonen, V. Touboltsev, K.Yu. Arutyunov, Phys. Rev. B 77, 054508 (2008). DOI 10.1103/PhysRevB.77.054508

    Article  ADS  Google Scholar 

  35. M. Zgirski, K.Y. Arutyunov, Phys. Rev. B 75(17), 172509 (2007). DOI 10.1103/PhysRevB.75.172509. http://link.aps.org/abstract/PRB/v75/e172509

    Google Scholar 

  36. M. Tian, N. Kumar, S. Xu, J. Wang, J.S. Kurtz, M.H.W. Chan, Phys. Rev. Lett. 95(7), 076802 (2005). DOI 10.1103/PhysRevLett.95.076802

    Article  ADS  Google Scholar 

  37. A. Rogachev, A. Bezryadin, Appl. Phys. Lett. 83, 512 (2003). DOI 10.1063/1.1592313

    Article  ADS  Google Scholar 

  38. A. Rogachev, A.T. Bollinger, A. Bezryadin, Phys. Rev. Lett. 94(1), 017004 (2005). DOI 10.1103/PhysRevLett.94.017004

    Article  ADS  Google Scholar 

  39. A. Bezryadin, C.N. Lau, M. Tinkham, Nature 404, 971 (2000). DOI 10.1038/35010060 Letter

    Article  ADS  Google Scholar 

  40. A.T. Bollinger, A. Rogachev, A. Bezryadin, Europhys. Lett. 76(3), 505 (2006). DOI 10.1209/epl/i2006-10275-5

    Article  ADS  Google Scholar 

  41. Y. Oreg1, A.M. Finkel’stein, Phys. Rev. Lett. 83(1), 191 (1999)

    Google Scholar 

  42. A.A. Shanenko, M.D. Croitoru, M. Zgirski, F.M. Peeters, K. Arutyunov, Phys. Rev. B 74(5), 052502 (2006). DOI 10.1103/PhysRevB.74.052502

    Google Scholar 

  43. C.N. Lau, N. Markovic, M. Bockrath, A. Bezryadin, M. Tinkham, Phys. Rev. Lett 87(21), 217003 (2001). DOI 10.1103/PhysRevLett.87.217003

    Google Scholar 

  44. Y.O. Dganit Meidan, G. Refael, Phys. Rev. Lett. 98(18), 187001 (2007). DOI 10.1103/PhysRevLett.98.187001

    Article  ADS  Google Scholar 

  45. D. Meidan, Y. Oreg, G. Refael, R.A. Smith, Phys. C 468(5), 341 (2008)

    ADS  Google Scholar 

  46. J.M. Graybeal1, P.M. Mankiewich, R.C. Dynes, M.R. Beasley, Phys. Rev. Lett 59(23), 2697 (1987)

    Google Scholar 

  47. N. Giordano, Phys. Rev. B 43(1), 160 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  48. N. Giordano, Phys. Rev. B 41(10), 6350 (1990)

    Article  ADS  Google Scholar 

  49. N. Giordano, Physica B 43(1-3), 460 (1994)

    Article  ADS  Google Scholar 

  50. A. Caldeira, A. Leggett, Phys. Rev. Lett. 46(4), 211 (1981). DOI 10.1103/PhysRevLett.46.211

    Article  ADS  Google Scholar 

  51. P. Xiong, A.V. Herzog, R.C. Dynes, Phys. Rev. Lett. 78, 927 (1997)

    Article  ADS  Google Scholar 

  52. Y.V. Nazarov, Phys. Rev. Lett 82, 1245 (1999)

    Article  ADS  Google Scholar 

  53. D. Golubev, A. Zaikin, Phys. Rev. Lett. 86, 4887 (2001)

    Article  ADS  Google Scholar 

  54. D. Golubev, A. Zaikin, Phys. Rev. B 69, 075318 (2004)

    Article  ADS  Google Scholar 

  55. D.A. Bagrets, Y.V. Nazarov, Phys. Rev. Lett. 94, 056801 (2005)

    Article  ADS  Google Scholar 

  56. A. Bezryadin, J. Phys.: Cond. Mat. 20, 1 (2008)

    Google Scholar 

  57. Mingliang Tian, Jinguo Wang, James S. Kurtz, Ying Liu, M.H.W. Chan, Theresa S. Maye, Thomas E. Malloukr, Phys. Rev. B 71, 104521 (2005)

    Google Scholar 

  58. S. Michotte, S. Mátéfi-Tempfli, L. Piraux, D.Y. Vodolazov and F.M. Peeters, Phys. Rev. B 69, 094512 (2004)

    Article  ADS  Google Scholar 

  59. J.S. Lehtinen, T. Sajavaara, K. Yu. Arutyunov, A. Vasiliev, arXiv:1106.3852.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yu. Arutyunov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arutyunov, K.Y. (2011). Experimental Study of the Fluctuation-Governed Resistive State in Quasi-One-Dimensional Superconductors. In: Sidorenko, A. (eds) Fundamentals of Superconducting Nanoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20158-5_2

Download citation

Publish with us

Policies and ethics