Skip to main content

Cryogenic Phase-Locking Loop System Based on SIS Tunnel Junction

  • Chapter
  • First Online:
Fundamentals of Superconducting Nanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

  • 1266 Accesses

Abstract

An ultra-wideband cryogenic phase-locking loop (CPLL) system is a new cryogenic device. The CPLL is intended for phase-locking of a Flux-Flow Oscillator (FFO) in a Superconducting Integrated Receiver (SIR) but can be used for any cryogenic terahertz oscillator. The key element of the CPLL is Cryogenic Phase Detector (CPD), a recently proposed new superconducting element. The CPD is an innovative implementation of superconductor–insulator–superconductor (SIS) tunnel junction. All components of the CPLL reside inside a cryostat at 4.2 K, with the loop length of about 50 cm and the total loop delay 5.5 ns. Such a small delay results in CPLL synchronization bandwidth as wide as 40 MHz and allows phase-locking of more than 60% of the power emitted by the FFO even for FFO linewidth of about 10 MHz. This percentage of phase-locked power three times exceeds that achieved with conventional room-temperature PLLs. Such an improvement enables reducing the FFO phase noise and extending the SIR operation range.Another new approach to the FFO phase-locking has been proposed and experimentally verified. The FFO has been synchronized by a cryogenic harmonic phase detector (CHPD) based on the SIS junction. The CHPD operates simultaneously as the harmonic mixer (HM) and phase detector. We have studied the HM based on the SIS junction theoretically; in particular we calculated 3D dependences of the HM output signal power versus the bias voltage and the LO power. Results of the calculations have been compared with experimental measurements. Good qualitative and quantitative correspondence has been achieved. The FFO phase-locking by the CHPD has been demonstrated. Such a PLL system is expected to be extra wideband. This concept is very promising for building of the multi-pixel SIR array.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.P. Koshelets, S.V. Shitov, L.V. Filippenko, A.M. Baryshev, H. Golstein, T. de Graauw, W. Luinge, H. Schaeffer, H. van de Stadt, First implementation of a superconducting integrated receiver at 450 GHz. Appl. Phys. Lett. 68(9), 1273 (1996)

    Google Scholar 

  2. V.P. Koshelets, S.V. Shitov, A.B. Ermakov, O.V. Koryukin, L.V. Filippenko, A.V. Khudchenko, M.Y.u. Torgashin, P. Yagoubov, R. Hoogeveen, O.M. Pylypenko, Superconducting integrated receiver for TELIS. IEEE Trans. Appl. Supercond. 15, 960–963, 2005

    Google Scholar 

  3. V.P. Koshelets, S.V. Shitov, A.V. Shchukin, L.V. Filippenko, J. Mygind, Linewidth of submillimeter wave flux-flow oscillators. Appl. Phys. Lett. 69, 699–701 (1996)

    Article  ADS  Google Scholar 

  4. V.P. Koshelets, S.V. Shitov, P.N. Dmitriev, A.B. Ermakov, L.V. Filippenko, V.V. Khodos, V.L. Vaks, A.M. Baryshev, P.R. Wesselius, J. Mygind, Towards a phase-locked superconducting integrated receiver: prospects and limitations. Phys. C 367, 249–255 (2002)

    Article  ADS  Google Scholar 

  5. V.P. Koshelets, S.V. Shitov, A.V. Shchukin, L.V. Filippenko, J. Mygind, A.V. Ustinov, Self-pumping effects and radiation linewidth of josephson flux-flow oscillators. Phys. Rev. B 56, 5572–5577 (1997)

    Article  ADS  Google Scholar 

  6. V.P. Koshelets, P.N. Dmitriev, A.B. Ermakov, A.S. Sobolev, M.Yu. Torgashin, V.V. Kurin, A.L. Pankratov, J. Mygind, Optimization of the phase-locked flux-flow oscillator for the submm integrated receiver. IEEE Trans. Appl. Supercond. 15, 964–967 (2005)

    Article  Google Scholar 

  7. S. AlBanna, R. Brito, B. Shillue, ALMA 1st LO photonic reference: status of phase drift measurements. NRAO website. Available: http://www.tuc.nrao.edu/~bshillue/E2E_Phase{\_}Drift{\_}Status{\_}RevB.doc (2005)

  8. A.V. Khudchenko, V.P. Koshelets, P.N. Dmitriev, A.B. Ermakov, P.A. Yagoubov, O.M. Pylypenko, Cryogenic phase detector for superconducting integrated receiver. IEEE Trans. Appl. Supercond. 17, 606–608 (2007)

    Article  ADS  Google Scholar 

  9. A.V. Khudchenko, V.P. Koshelets, P.N. Dmitriev, A.B. Ermakov, O.M. Pylypenko, P.A. Yagoubov, Cryogenic phase locking loop system for flux-flow oscillator, in Proceedings of the 19th International Symposium on Space Terahertz Technology (ISSTT-08) 2, 511–515 (2009)

    Google Scholar 

  10. A.V. Khudchenko, V.P. Koshelets, P.N. Dmitriev, A.B. Ermakov, P.A. Yagoubov, O.M. Pylypenko, Cryogenic phase locking loop system for superconducting integrated receiver, Supercond. Sci. Technol. 22(8), (2009)

    Google Scholar 

  11. V.C. Lindsey, Synchronization Systems in Communication and Control (Prentice-Hall, New Jersey, 1972)

    Google Scholar 

  12. J.R. Tucker, M.J. Feldman, Rev. Mod. Phys. 57(4), 1055 (1985).

    Article  ADS  Google Scholar 

  13. K.K. Likharev, Dynamics of Josephson junctions and circuits (Gordon and Breach, 1986)

    Google Scholar 

  14. A.V. Khudchenko, V.P. Koshelets, P.N. Dmitriev, Ermakov, A cryogenic phase detector for a cooled wideband phase-lock loop system. J. Commun. Tech. Electron. 53(5) 594–599 (2008)

    Google Scholar 

  15. F.M. Gardner, Phaselock Techniques (Wiley, 1979)

    Google Scholar 

  16. A.V. Khudchenko, V.P. Koshelets, P.N. Dmitriev, A.B. Ermakov, O.M. Pylypenko, Cryogenic phase locking loop system for flux-flow oscillators, Extended Abstracts of the International Superconductive Conference ISEC’2009 HF-P17 Japan (2009)

    Google Scholar 

  17. A.L. Pankratov, V.L. Vaks, V.P. Koshelets, Spectral properties of phase locked flux-flow oscillator. J. Appl. Phys. 102, 0629 (2007)

    Article  Google Scholar 

  18. S. Withington, P. Kittara, G. Yassin, Multitone quantum simulations of saturating tunnel junction mixers. J. Appl. Phys. 93, 9812–9822 (2003)

    Article  ADS  Google Scholar 

  19. P. Kittara, S. Withington, G. Yassin, Theoretical and numerical analysis of very high harmonic superconducting tunnel junction mixers. J. Appl. Phys. 101, 024508 (2007)

    Article  ADS  Google Scholar 

  20. P.K. Tien, J.P. Gordon, Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor filmsPhys. Rev. 129, 647–653 (1963)

    Article  Google Scholar 

  21. N.R. Werthamer, Nonlinear self-coupling of josephson radiation in superconducting tunnel junction Phys. Rev. 147, 255 (1966)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank colleagues at IREE and SRON for support and assistance in experiments and fruitful discussions: A.M. Baryshev, P.N. Dmitriev, A.B. Ermakov, P.A. Yagoubov, H. Golstein, and M. van den Bemt.

The work was supported in parts by RFBR projects 09-02-00246, 09-02-12172-ofi-m, Grant for Leading Scientific School 5423.2010.2 and State contract No. 02.740.11.0795.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Khudchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khudchenko, A.V., Koshelets, V.P., Kalashnikov, K.V. (2011). Cryogenic Phase-Locking Loop System Based on SIS Tunnel Junction. In: Sidorenko, A. (eds) Fundamentals of Superconducting Nanoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20158-5_11

Download citation

Publish with us

Policies and ethics