Skip to main content

Integrated Submm Wave Receiver: Development and Applications

  • Chapter
  • First Online:
Fundamentals of Superconducting Nanoelectronics

Abstract

A superconducting integrated receiver (SIR) comprises in a single chip a planar antenna combined with a superconductor-insulator-superconductor (SIS) mixer, a superconducting Flux Flow Oscillator (FFO) acting as a Local Oscillator (LO) and a second SIS harmonic mixer (HM) for the FFO phase locking. In this report, an overview of the SIR and FFO developments and optimizations is presented. Improving on the fully Nb-based SIR we have developed and studied Nb–AlN–NbN circuits, which exhibit an extended operation frequency range. Continuous tuning of the phase locked frequency has been experimentally demonstrated at any frequency in the range 350–750 GHz. The FFO free-running linewidth has been measured between 1 and 5 MHz, which allows to phase lock up to 97% of the emitted FFO power. The output power of the FFO is sufficient to pump the matched SIS mixer. Therefore, it is concluded that the Nb–AlN–NbN FFOs are mature enough for practical applications.These achievements enabled the development of a 480–650 GHz integrated receiver for the atmospheric-research instrument TErahertz and submillimeter LImb Sounder (TELIS). This balloon-borne instrument is a three-channel superconducting heterodyne spectrometer for the detection of spectral emission lines of stratospheric trace gases that have their rotational transitions at THz frequencies. One of the channels is based on the SIR technology. We demonstrate for the first time the capabilities of the SIR technology for heterodyne spectroscopy in general, and atmospheric limb sounding in particular. We also show that the application of SIR technology is not limited to laboratory environments, but that it is well suited for remote operation under harsh environmental conditions. Light weight and low power consumption combined with broadband operation and nearly quantum limited sensitivity make the SIR a perfect candidate for future airborne and space-borne missions. The noise temperature of the SIR was measured to be as low as 120 K in double sideband operation, with an intermediate frequency band of 4–8 GHz. The spectral resolution is well below 1 MHz, confirmed by our measurements. Remote control of the SIR under flight conditions has been demonstrated in a successful balloon flight in Kiruna, Sweden.Capability of the SIR for high-resolution spectroscopy has been successfully proven also in a laboratory environment by gas cell measurements. The possibility to use SIR devices for the medical analysis of exhaled air will be discussed. Many medically relevant gases have spectral lines in the sub-terahertz range and can be detected by an SIR-based spectrometer. The SIR can be considered as an operational device, ready for many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.P. Koshelets, S.V. Shitov, L.V. Filippenko, A.M. Baryshev, H. Golstein, T. de Graauw, W. Luinge, H. Schaeffer, H. van de Stadt First implementation of a superconducting integrated receiver at 450 GHz. Appl. Phys. Lett. 68(9), 1273 (1996)

    Google Scholar 

  2. V.P. Koshelets, S.V. Shitov, Integrated superconducting receivers. Supercond. Sci. Technol. 13, R53 (2000)

    ADS  Google Scholar 

  3. P. Yagoubov, R. Hoogeveen, M. Torgashin, A. Khudchenko, V. Koshelets, N. Suttiwong, G. Wagner, M. Birk, 550–650 GHz spectrometer development for TELIS. Proc. ISSTT 338 (2006)

    Google Scholar 

  4. V.P. Koshelets, A.B. Ermakov, L.V. Filippenko, A.V. Khudchenko, O.S. Kiselev, A.S. Sobolev, M.Y.u. Torgashin, P.A. Yagoubov, R.W.M. Hoogeveen, W. Wild Iintegrated submillimeter receiver for TELIS. IEEE Trans. Appl. Supercond. 17, 336 (2007)

    Google Scholar 

  5. G. de Lange, D. Boersma, J. Dercksen, P. Dmitriev, A. Ermakov, L. Filippenko, H. Golstein, R. Hoogeveen, L. de Jong, A. Khudchenko, N. Kinev, O. Kiselev, B. van Kuik, A. de Lange, J. van Rantwijk, A. Sobolev, M. Torgashin, E. de Vries, P. Yagoubov, V. Koshelets, Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder. Supercond. Sci. Technol. 23(4), 045016 (2010)

    Google Scholar 

  6. T. Nagatsuma, K. Enpuku, F. Irie, K. Yoshida, Flux-flow type Josephson oscillator for millimeter and submillimeter wave region. J. Appl. Phys. 54, 3302, (1983), see also Pt. II: J. Appl. Phys. 56, 3284 (1984); Pt. III, J. Appl. Phys. 58, 441 (1985); Pt. IV, J. Appl. Phys. 63, 1130 (1988)

    Google Scholar 

  7. V.P. Koshelets, P.N. Dmitriev, A.B. Ermakov, A.S. Sobolev, M.Y.u. Torgashin, V.V. Kurin, A.L. Pankratov, J. Mygind, Optimization of the phase-locked flux-flow oscillator for the submm integrated receiver. IEEE Trans. Appl. Supercond. 15, 964–967 (2005)

    Google Scholar 

  8. I. Mehdi, THz local oscillator technology. Proc. SPIE 5498, 103 (2004)

    ADS  Google Scholar 

  9. R.W.M. Hoogeveen, P.A. Yagoubov, A. de Lange, A.M. Selig, V.P. Koshelets, B.N. Ellison, M. Birk, Proc. SPIE 5978, 440 (2005)

    ADS  Google Scholar 

  10. R.W.M. Hoogeveen, P.A. Yagoubov, G. de Lange, A. de Lange, V. Koshelets, M. Birk, B. Ellison, Proc. SPIE 6744, 67441U-1 (2007)

    Article  Google Scholar 

  11. F. Friedl-Vallon, G. Maucher, M. Seefeldner, O. Trieschmann, A. Kleinert, A. Lengel, C. Keim, H. Oelhaf, H. Fischer, Appl. Opt. 43, 3335 (2004)

    Article  ADS  Google Scholar 

  12. V.P. Koshelets, S.V. Shitov, A.B. Ermakov, O.V. Koryukin, L.V. Filippenko, A.V. Khudchenko, M.Y.u. Torgashin, P. Yagoubov, R. Hoogeveen, O.M. Pylypenko, Superconducting integrated receiver for TELIS. IEEE Trans. Appl. Supercond. 15, 960–963, 2005

    Google Scholar 

  13. V.P. Koshelets, S.V. Shitov, A.V. Shchukin, L.V. Filippenko, J. Mygind, A.V. Ustinov, Self-pumping effects and radiation linewidth of Josephson flux flow oscillators. Phys Rev B 56, 5572–5577 (1997)

    Article  ADS  Google Scholar 

  14. P.N. Dmitriev, I.L. Lapitskaya, L.V. Filippenko, A.B. Ermakov, S.V. Shitov, G.V. Prokopenko, S.A. Kovtonyuk, V.P. Koshelets, High quality Nb-based integrated circuits for high frequency and digital applications. IEEE Trans. Appl. Supercond. 13(2), 107–110 (2003)

    Google Scholar 

  15. M.Y.u. Torgashin, V.P. Koshelets, P.N. Dmitriev, A.B. Ermakov, L.V. Filippenko, P.A. Yagoubov, Superconducting integrated receivers based on Nb-AlN-NbN circuits. IEEE Trans. Appl. Supercond. 17, 379–382 (2007)

    Google Scholar 

  16. V.P. Koshelets, S.V. Shitov, A.V. Shchukin, L.V. Filippenko, J. Mygind, Linewidth of submillimeter wave flux-flow oscillators. Appl. Phys. Lett. 69, 699–701 (1996)

    Article  ADS  Google Scholar 

  17. V.P. Koshelets, J. Mygind, Flux flow oscillators for superconducting integrated submm wave receivers, in Studies of High Temperature Superconductors, 39, ed. by A.V. Narlikar (NOVA Science Publishers, New York, 2001) 213–244

    Google Scholar 

  18. V.P. Koshelets, A.B. Ermakov, P.N. Dmitriev, A.S. Sobolev, A.M. Baryshev, P.R. Wesselius, J. Mygind, Radiation linewidth of flux flow oscillators. Supercond. Sci. Technol. 14, 1040–1043 (2001)

    Article  ADS  Google Scholar 

  19. V.P. Koshelets, S.V. Shitov, P.N. Dmitriev, A.B. Ermakov, L.V. Filippenko, V.V. Khodos, V.L. Vaks, A.M. Baryshev, P.R. Wesselius, J. Mygind, Towards a phase-locked super- conducting integrated receiver: prospects and limitations. Phys. C 367, 249–255 (2002)

    Article  ADS  Google Scholar 

  20. A.L. Pankratov, Form and width of spectral line of a Josephson flux flow oscillator. Phys. Rev. B. 65, 054504 (2002)

    Article  ADS  Google Scholar 

  21. V.P. Koshelets, A.B. Ermakov, S.V. Shitov, P.N. Dmitriev, L.V. Filippenko, A.M. Baryshev, W. Luinge, J. Mygind, V.L. Vaks, D.G. Pavel’ev, Superfine resonant structure on IVC of long Josephson junctions and its influence on flux flow oscillator linewidth. IEEE Trans. Appl. Supercond. 11, 1211–1214 (2001)

    Google Scholar 

  22. P. Berberich, R. Buemann, H. Kinder, Monochromatic phonon generation by the Josephson effect. Phys. Rev. Lett. 49(20), 1500–1503 (1982)

    Google Scholar 

  23. V.P. Koshelets, S.V. Shitov, L.V. Filippenko, P.N. Dmitriev, A.B. Ermakov, A.S. Sobolev, M.Y.u. Torgashin, A.L. Pankratov, V.V. Kurin, P. Yagoubov, R. Hoogeveen Superconducting phase-locked local oscillator for a submm integrated receiver. Supercond. Sci. Technol. 17, $127–$131 (2004)

    Google Scholar 

  24. A.L. Pankratov, V.L. Vaks, V.P. Koshelets, Spectral properties of phase locked flux flow oscillator. J. Appl. Phys. 102, 0629 (2007)

    Article  Google Scholar 

  25. A.V. Khudchenko, V.P. Koshelets, P.N. Dmitriev, A.B. Ermakov, P.A. Yagoubov, O.M. Pylypenko, Cryogenic phase detector for superconducting integrated receiver. IEEE Trans. Appl. Supercond. 17, 606–608 (2007)

    Article  ADS  Google Scholar 

  26. E. Schomburg, R. Scheuerer, S. Brandl, K.F. Renk, D.G. Paveliev, Y.u. Koschurinov, V. Ustinov, A. Zhukov, A. Kovsh, P.S. Kopev, Electron. Lett. 35(17) (1999)

    Google Scholar 

  27. http://www2.rohde-schwarz.com/product/smf100a.html

  28. P. Yagoubov, H. van de Stadt, R. Hoogeveen, V. Koshelets, M. Birk, A. Murk, in Proceedings of the 28th ESA Antenna Workshop on Space Antenna Systems and Technologies, Noordwijk, 2, 763 (2005)

    Google Scholar 

  29. P.A. Yagoubov, W.J. Vreeling, H. van de Stadt, R.W.M. Hoogeveen, O.V. Koryukin, V.P. Koshelets, O.M. Pylypenko, A. Murk, in Proceedings of the 16th Intern. Conf. on Space Terahertz Technology, Gothenburg, 438 (2005)

    Google Scholar 

  30. A. Murk, P. Yagoubov, U. Mair, M. Birk, G. Wagner, H. van de Stadt, R. Hoogeveen, N. Kämpfer, Proc. of the 28th ESA Antenna Workshop on Space Antenna Systems and Technologies, Noordwijk, 757 (2005)

    Google Scholar 

  31. B.N. Ellison, B.P. Moyna, D.N. Matheson, A. Jones, S.M.X. Claude, C. Mann, B.J. Kerridge, R. Siddans, R. Munro, W.J. Reburn, in Proceedings of 2nd ESA Workshop on Millimetre Wave Technology and Applications, Espoo, (1998)

    Google Scholar 

  32. S. Cherednichenko, V. Drakinskiy, T. Berg, P. Khosropanah, E. Kollberg, Rev. Sci. Instrum. 79, 034501 (2008)

    Article  ADS  Google Scholar 

  33. A. Emrich, S. Andersson, M. Knis Proceedings of the joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, Shanghai, 314 (2006)

    Google Scholar 

Download references

Acknowledgements

The authors thank colleagues at DLR, IPM, IREE, and SRON for help and assistance in the SIR channel design and characterization: J Barkhof, A Baryshev, J Kooi, O Koryukin, A Pankratov, D Paveliev O Pylypenko, M Romanini, and S Shitov; as well as T de Graauw and W Wild are acknowledged for their support of this work.

The work was supported in parts by RFBR projects 09–02–00246, 09–02–12172-ofi-m, Grant for Leading Scientific School 5423.2010.2 and State contract No. 02.740.11.0795.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery P. Koshelets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koshelets, V.P. et al. (2011). Integrated Submm Wave Receiver: Development and Applications. In: Sidorenko, A. (eds) Fundamentals of Superconducting Nanoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20158-5_10

Download citation

Publish with us

Policies and ethics