Skip to main content

“Fluctuoscopy” of Superconductors

  • Chapter
  • First Online:
Fundamentals of Superconducting Nanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

  • 1328 Accesses

Abstract

Study of fluctuation phenomena in superconductors (SCs) is the subject of great fundamental and practical importance. Understanding of their physics allowed to clear up the fundamental properties of SC state. Being predicted in 1968, one of the fluctuation effects, namely paraconductivity, was experimentally observed almost simultaneously. Since this time, fluctuations became a noticeable part of research in the field of superconductivity, and a variety of fluctuation effects have been discovered. The new wave of interest to fluctuations (FL) in superconductors was generated by the discovery of cuprate oxide superconductors (high-temperature superconductors, HTS), where, due to extremely short coherence length and low effective dimensionality of the electron system, superconductive fluctuations manifest themselves in a wide range of temperatures. Moreover, anomalous properties of the normal state of HTS were attributed by many theorists to strong FL in these systems. Being studied in the framework of the phenomenological Ginzburg–Landau theory and, more extensively, in diagrammatic microscopic approach, SC FLs side by side with other quantum corrections (weak localization, etc.) became a new tool for investigation and characterization of such new systems as HTS, disordered electron systems, granular metals, Josephson structures, artificial super-lattices, etc. The characteristic feature of SC FL is their strong dependence on temperature and magnetic fields in the vicinity of phase transition. This allows one to definitely separate the fluctuation effects from other contributions and to use them as the source of information about the microscopic parameters of a material. By their origin, SC FLs are very sensitive to relaxation processes, which break phase coherence. This allows using them for versatile characterization of SC. Today, one can speak about the “ fluctuoscopy” of superconductive systems. In review, we present the qualitative picture both of thermodynamic fluctuations close to critical temperature T c0and quantum fluctuations at zero temperature and in vicinity of the second critical field H c2(0). Then in the frameworks of the Ginzburg–Landau theory, we discuss the characteristic crossovers in fluctuation properties of superconductive nanoparticles and layered superconductors. We present the general expression for fluctuation magneto-conductivity valid through all phase diagram of superconductor and apply it to study of the quantum phase transition close to H c2(0). Fluctuation analysis of this transition allows us to present the scenario of fluctuation defragmentation of the Abrikosov lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.I. Larkin, A.A. Varlamov, Theory of Fluctuations in Superconductors, 2nd edn (Oxford University Press, USA, 2009)

    Google Scholar 

  2. L.G. Aslamazov, A.I. Larkin, Soviet Solid State Phys. 10, 875 (1968)

    Google Scholar 

  3. K. Maki, Prog. Theor. Phys. 39, 897

    Google Scholar 

  4. K. Maki, Prog. Theor. Phys. 40, 193 (1968)

    Article  ADS  Google Scholar 

  5. R.S. Thompson, Phys. Rev. B 1, 327 (1970)

    Article  ADS  Google Scholar 

  6. L.B. Ioffe, A.I. Larkin, A.A. Varlamov, Yu. Lu, Phys. Rev. B 47, 8936 (1993)

    Article  ADS  Google Scholar 

  7. V.V. Dorin, R.A. Klemm, A.A. Varlamov, A.I. Buzdin, D.V. Livanov, Phys. Rev. B 48, 12591 (1993)

    Article  Google Scholar 

  8. L.G. Aslamazov, A.A. Varlamov, J. Low Temp. Phys. 38, 223 (1980)

    Article  ADS  Google Scholar 

  9. A.I. Larkin, JETP Lett. 31, 219 (1980)

    ADS  Google Scholar 

  10. B.L. Altshuler, M.Yu. Reyzer, A.A. Varlamov, Soviet JETP 57, 1329 (1983)

    Google Scholar 

  11. J.M.B. Lopes dos Santos, E. Abrahams, Phys. Rev. B 31, 172 (1985)

    Article  ADS  Google Scholar 

  12. I.S. Beloborodov, K.B. Efetov, Phys. Rev. Lett. 82, 3332 (1999)

    Article  ADS  Google Scholar 

  13. I.S. Beloborodov, K.B. Efetov, A.I. Larkin, Phys. Rev. B 61, 9145 (2000)

    Article  ADS  Google Scholar 

  14. V.M. Galitski, A.I. Larkin, Phys. Rev. Lett. 87, 087001 (2001)

    Article  ADS  Google Scholar 

  15. M.A. Skvortsov, M. Serbin, A.A. Varlamov, V. Galitski, Phys. Rev. Lett. 102, 067001, (2009)

    Article  ADS  Google Scholar 

  16. A. Glatz, A.A. Varlamov, V.M. Vinokur, Europhys. Lett. 94, 47005 (2011)

    Article  ADS  Google Scholar 

  17. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  18. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Strictly speaking τ in the majority of future results should be understood as the electron transport scattering time τtr. Nevertheless, as is well known, in the case of isotropic scattering these values coincide; so for the sake of simplicity we will use hereafter the symbol τ

    Google Scholar 

  20. This particle density is defined in the (D)-dimensional space. This means that it determines the normal volume density of pairs in the 3Dcase, the density per square unit in the 2Dcase and the number of pairs per unit length in 1D. The real 3Dconcentration Ncan be defined too: N = N s (2) ∕ d, where dis the thickness of the film and \(N = {N}_{s}^{(1)}/S\), where Sis the wire cross-section

    Google Scholar 

  21. This formula is valid for the dimensionalities D = 2, 3, when the fluctuation Cooper pair has the ability to “ rotate” in the applied magnetic field and the average square of the rotation radius is < R 2 > ∼ ξ2(T). “Size” effects, important for low-dimensional samples, will be discussed later on

    Google Scholar 

  22. Z.A. Xu, et al., Nature 406, 486 (2000)

    Article  ADS  Google Scholar 

  23. P.W. Anderson, arXiv:cond-mat/0603726.

    Google Scholar 

  24. D. Podolsky, S. Raghu, A. Vishwanath, Phys. Rev. Lett. 99, 117004 (2007)

    Article  ADS  Google Scholar 

  25. A. Pouret, et al., Phys. Rev. Lett. 96, 176402 (2006)

    Article  ADS  Google Scholar 

  26. I. Ussishkin, S.L. Sondhi, D.A. Huse, Phys. Rev. Lett. 89, 287001 (2002)

    Article  ADS  Google Scholar 

  27. A. Levchenko, M. Norman, A.A. Varlamov, Phys. Rev. B 83, 020506 (R) (2011)

    Google Scholar 

  28. A.A. Varlamov, A. Kavokin, Europhys. Lett. 87, 47007 (2009)

    Article  Google Scholar 

  29. A.A. Abrikosov, Fundamentals of the Theory of Metals(North Holland, 1988)

    Google Scholar 

  30. Hereafter \(\hslash= {k}_{\mathrm{B}} = c = 1\)

    Google Scholar 

  31. For simplicity in this subsection the magnetic field is assumed to be zero

    Google Scholar 

  32. V.V. Schmidt, in Proceedings of the 10th International Conference on Low Temperature Physics, C2, p. 205, VINITI, Moscow (1967)

    Google Scholar 

  33. T. Tsuboi, T. Suzuki, J. Phys. Soc. Jpn 42, 654 (1977)

    Google Scholar 

  34. The precise value of the effective charge e ∗  = 2ecould not be determined in the framework of the GL phenomenology. It was found in the Gor’kov’s microscopic rederivation of their equations

    Google Scholar 

  35. For a spherical particle \({H}_{\mathrm{c2(0})}^{\mathrm{sph}}(\epsilon ) = \frac{{\Phi }_{0}} {\pi d\xi }\sqrt{10\epsilon }\)

    Google Scholar 

  36. E. Bernardi, et al., Phys. Rev. B 74, 134509 (2006)

    Article  ADS  Google Scholar 

  37. W.E. Lawrence, S. Doniach, in Proceedings  of the 12th International Conference on Low Temperature Physics, ed. by E. Kanda, p.361 (Academic Press, Japan, Kyoto, 1971)

    Google Scholar 

  38. K. Yamaji, Phys. Lett. A 38, 43 (1972)

    Article  ADS  Google Scholar 

  39. L.G. Aslamazov and A.I. Larkin,  Zhurnal Eksperimentalnoi i Teoreticheskoi Fisiki 67, 647 (1973) [Soviet Phys. JETP 40, 321 (1974)]

    Google Scholar 

  40. A. Schmid, Phys. Rev. 180, 527 (1969)

    Article  ADS  Google Scholar 

  41. H. Schmidt, Zeitschrift für Physik B 216, 336 (1968)

    Article  ADS  Google Scholar 

  42. R.E. Prange, Phys. Rev. B 1, 2349 (1970)

    Article  ADS  Google Scholar 

  43. B.R. Patton, V. Ambegaokar, J.W. Wilkins, Solid State Commun. 7, 1287 (1969)

    Article  ADS  Google Scholar 

  44. J. Kurkijarvi, V. Ambegaokar, G. Eilenberger, Phys. Rev., B 5, 868 (1972)

    Google Scholar 

  45. J.P. Gollub, M.R. Beasley, R.S. Newbower, M. Tinkham, Phys. Rev. Lett. 22, 1288 (1969)

    Google Scholar 

  46. J.P. Gollub, M.R. Beasley, M. Tinkham, Phys. Rev. Lett. 25, 1646 (1970)

    Article  ADS  Google Scholar 

  47. J.P. Gollub, M.R. Beasley, R. Callarotti, M. Tinkham, Phys. Rev. B 7, 3039 (1973)

    Article  ADS  Google Scholar 

  48. P.A. Lee, S.R. Shenoy, Phys. Rev. Lett. 28, 1025 (1972)

    Article  ADS  Google Scholar 

  49. S.P. Farrant, C.E. Gough, Phys. Rev. Lett. 34, 943 (1975)

    Article  ADS  Google Scholar 

  50. W.J. Skocpol, M. Tinkham, Rep. Progress Phys. 38, 1094 (1975)

    Article  Google Scholar 

  51. R.S. Thompson, V.Z. Kresin, Modern Phys. Lett. B 2, 1159 (1988)

    Article  ADS  Google Scholar 

  52. K.F. Quader, E. Abrahams, Phys. Rev. B 38, 11977 (1988)

    Article  ADS  Google Scholar 

  53. W.C. Lee, R.A. Klemm, D.C. Johnson, Phys. Rev. Lett. 63, 1012 (1989)

    Article  ADS  Google Scholar 

  54. P. Carretta, A. Lascialfari, A. Rigamonti, A. Rosso, A.A. Varlamov, Phys. Rev. B 61, 12420 (2000)

    Article  ADS  Google Scholar 

  55. T.M. Mishonov, E.S. Penev, Int. J. Modern Phys. 14, 3831 (2000)

    Article  ADS  MATH  Google Scholar 

  56. A.I. Buzdin, V.V. Dorin, in  Fluctuation  phenomena in high temperature  superconductors, ed. by M. Ausloos, A.A. Varlamov, NATO-ASI Series (Kluwer, Dordrecht, 1997)

    Google Scholar 

  57. S. Hikami, A. Fujita, A.I. Larkin, Phys. Rev. B 44, 10400 (1991)

    Article  ADS  Google Scholar 

  58. C. Baraduc, A.I. Buzdin, J-Y. Henry, J.P. Brison, L. Puech, Phys. C 248, 138 (1995)

    Google Scholar 

  59. A. Junod, J-Y. Genoud, G. Triscone, Phys. C 294, 115 (1998)

    Google Scholar 

  60. A. Lascialfari, A. Rigamonti, P. Tedesco, A.A. Varlamov, Phys. Rev. B 65, 144523 (2002)

    Article  ADS  Google Scholar 

  61. This term may have different origins. First of all, evidently, paraconductivity is analogous to paramagnetism and means excess conductivity. Another possible origin is an incorrect onomatopoeic translation from the Russian “paroprovodimost’ ” that means pair conductivity

    Google Scholar 

  62. A. Schmid, Physik Kondensierter Materie 5, 302 (1966)

    Article  ADS  Google Scholar 

  63. C. Caroli, K. Maki, Phys. Rev. 159, 306 (1967)

    Article  ADS  Google Scholar 

  64. C. Caroli, K. Maki, Phys. Rev. 159, 316 (1967)

    Article  ADS  Google Scholar 

  65. E. Abrahams, T. Tsuneto, Phys. Rev. 152, 416 (1966)

    Article  ADS  Google Scholar 

  66. J.W.F. Woo, E. Abrahams, Phys. Rev. 169, 407 (1968)

    Article  ADS  Google Scholar 

  67. C. Di Castro, W. Young, Il Nuovo Cimento B 62, 273 (1969)

    Article  ADS  Google Scholar 

  68. S. Ullah, A.T. Dorsey, Phys. Rev. B 44, 262 (1991)

    Article  ADS  Google Scholar 

  69. S. Ullah, A.T. Dorsey, Phys. Rev. Lett. 65, 2066 (1990)

    Article  ADS  Google Scholar 

  70. L.P. Gor’kov, G.M. Eliashberg, Zhurnal Eksperimentalnoi i  Teoreticheskoi Fiziki 54, 612 (1968) [Soviet Phys. JETP 27, 328 (1968)]

    Google Scholar 

  71. An equation of this type was considered by Landau and Khalatnikov in connection with the study of superfluid helium dynamics in early 1950s

    Google Scholar 

  72. Account for electron- hole asymmetry leads to the appearance of the imaginary part of γGLproportional to the derivative \(\partial \ln (\rho {v}^{2}\tau )/\partial E{\vert }_{{E}_{F}} \sim \mathcal{O}(1/{E}_{F})\). This is important for such phenomena as fluctuation Hall effect or fluctuation thermopower and, having in mind the writing of the most general formula, we will suppose \({\gamma }_{\mathrm{GL}} = \pi \alpha /8 + i\mathrm{Im} {\gamma }_{\mathrm{GL}}\), where necessary

    Google Scholar 

  73. L.D. Landau, E.M. Lifshitz, Quantum Mechanics. Course of Theoretical Physics,vol. 3 (Pergamon Press, Oxford, 1978)

    Google Scholar 

  74. L. Reggiani, R. Vaglio, A.A. Varlamov, Phys. Rev. B 44, 9541 (1991)

    Article  ADS  Google Scholar 

  75. M. Ausloos, Ch. Laurent, Phys. Rev. B 37, 611 (1988)

    Article  ADS  Google Scholar 

  76. P.P. Frietas, C.C. Tsuei, T.S. Plaskett, Phys. Rev. B 36, 833 (1987)

    Article  ADS  Google Scholar 

  77. M. Hikita, M. Suzuki, Phys. Rev. B 41, 834 (1990)

    Article  ADS  Google Scholar 

  78. M. Akinaga, D. Abukay, L. Rinderer, Modern Phys. Lett. 2, 891 (1988)

    Article  ADS  Google Scholar 

  79. A. Poddar, P. Mandal, A.N. Das, B. Ghosh, P. Choudhury, Phys. C 159, 231 (1989)

    Article  ADS  Google Scholar 

  80. D.H. Kim, A.M. Goldman, J.H. Kang, K.E. Gray, R.T. Kampwirth, Phys. Rev. B 39, 12275 (1989)

    Article  ADS  Google Scholar 

  81. G. Balestrino, A. Nigro, R. Vaglio, Phys. Rev. B 39, 12264 (1989)

    Article  ADS  Google Scholar 

  82. G. Kumm, K. Winzer, Phys. B 165-166, 1361 (1990)

    Article  Google Scholar 

  83. M.R. Cimberle, C. Ferdeghini, D. Marrè, M. Putti, S. Siri, F. Federici, A.A. Varlamov, Phys. Rev. B 55, R14745 (1997)

    Article  ADS  Google Scholar 

  84. G. Balestrino, E. Milani, A.A. Varlamov, Phys. C 210, 386 (1993)

    Article  ADS  Google Scholar 

  85. I.V. Lerner, A.A. Varlamov, V.M. Vinokur, Phys. Rev. Lett. 100, 117003, (2008)

    Article  ADS  Google Scholar 

  86. B. Leridon, J. Vanacken, T. Wambecq, V. Moshchalkov, Phys. Rev. B 76, 012503 (2007)

    Article  ADS  Google Scholar 

  87. V.F. Gantmakher, S.N. Ermolov, G.E. Tsydynzhapov, A.A. Zhukov, T.I. Baturina, JETP Lett. 77, 498 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges valuable discussions and collaborations with G. Balestrino, A. Glatz, B. Leridon, A. Rigamonti, V. Vinokur and also support of the MIUR under the project PRIN 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Varlamov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varlamov, A.A. (2011). “Fluctuoscopy” of Superconductors. In: Sidorenko, A. (eds) Fundamentals of Superconducting Nanoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20158-5_1

Download citation

Publish with us

Policies and ethics