Skip to main content

Generating Random Graphic Sequences

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6587))

Included in the following conference series:

Abstract

The graphs that arise from concrete applications seem to correspond to models with prescribed degree sequences. We present two algorithms for the uniform random generation of graphic sequences. We prove their correctness. We empirically evaluate their performance. To our knowledge these algorithms are the first non trivial algorithms proposed for this task. The algorithms that we propose are Markov chain Monte Carlo algorithms. Our contribution is the original design of the Markov chain and the empirical evaluation of mixing time.

This research is supported by NUS grant R-252-000-328-112.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E.J., Alon, U.: On the uniform generation of random graphs with prescribed degree sequences. Arxiv preprint cond-mat/0312028 (2003)

    Google Scholar 

  2. Viger, F., Latapy, M.: Efficient and simple generation of random simple connected graphs with prescribed degree sequence. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 440–449. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Genio, C.I.D., Kim, H., Toroczkai, Z., Bassler, K.E.: Efficient and exact sampling of simple graphs with given arbitrary degree sequence. CoRR abs, 1002.2975 (2010)

    Google Scholar 

  4. Gkantsidis, C., Mihail, M., Zegura, E.: The Markov chain simulation method for generating connected power law random graphs. In: Proc. 5th Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM, Philadelphia (2003)

    Google Scholar 

  5. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  6. Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Structures and Algorithms 6, 161–179 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cooper, C., Frieze, A., Krivelevich, M.: Hamilton cycles in random graphs with a fixed degree sequence. SIAM J. Discrete Math. 24(2), 558–569 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Annals of Combinatorics 6(2), 125–145 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ruskey, F., Eades, P., Cohen, B., Scott, A.: Alley CATs in search of good homes. Congressus Numerantium 102, 97–110 (1994)

    MathSciNet  Google Scholar 

  10. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: SIGMOD (2008)

    Google Scholar 

  11. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sinclair, A.: Algorithms for Random Generation and Counting: A Markov Chain Approach. Progress in Theoretical Computer Science. Birkhauser, Boston (1992)

    MATH  Google Scholar 

  13. Nobari, S., Lu, X., Karras, P., Bressan, S.: Fast Random Graph Generation. Accepted and to appear in EDBT (2011)

    Google Scholar 

  14. Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing data mining results via swap randomization. In: SIGKDD, pp. 167–176 (2006)

    Google Scholar 

  15. Hasan, M.A., Zaki, M.: Musk: Uniform sampling of k maximal patterns. In: SIAM Data Mining (2009)

    Google Scholar 

  16. Hakimi, S.: On the realizability of a set of integers as degrees of the vertices of a graph. SIAM J. Applied Math. 10, 496–506 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  17. Havel, V.: A remark on the existence of finite graphs (Hungarian). Časopis Pěst. Mat. 80, 477–480 (1955)

    MATH  Google Scholar 

  18. Erdös, P., Gallai, T.: Graphs with prescribed degrees of vertices. Mat. Lapok (1960)

    Google Scholar 

  19. Barnes, T.: A recurrence for counting graphical partitions. The Electronic Journal of Combinatorics 2(1) (1995)

    Google Scholar 

  20. Stanley, R.P.: A zonotope associated with graphical degree sequences (manuscript) (1989); appeared in Applied Geometry and Discrete Math. Dimacs Series. AMS, Providence (1991)

    Google Scholar 

  21. Peled, U.N., Srinivasan, M.K.: The polytope of degree sequences. Linear Algebra Appl. 114, 349–377 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sierksma, G., Hoogeveen, H.: Seven criteria for integer sequences being graphic. Journal of Graph Theory 15(2), 223–231 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Burns, J.M.: The number of degree sequences of graphs. Phd thesis. Massachusetts Institute of Technology (2007)

    Google Scholar 

  24. Barnes, T.M., Savege, C.D.: Efficient generation of graphical partitions. Discrete Applied Mathematics 78, 17–26 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cover, T.M., Thomas, J.A.: Elements of information theory. Chapter 4.3

    Google Scholar 

  26. Skiena, S.: Implementing discrete mathematics: combinatorics andgraph theory with mathematica. Addison-Wesley, MA (1990)

    MATH  Google Scholar 

  27. Sloane, N., Plouffe, S.: The Encyclopedia of Integer Sequences. Academic Press, London (1995)

    MATH  Google Scholar 

  28. Lu, X., Bressan, S.: Generating Random Graphic Sequences. School of Computing, National University of Singapore, Technical Report TRA1/11 (January 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, X., Bressan, S. (2011). Generating Random Graphic Sequences. In: Yu, J.X., Kim, M.H., Unland, R. (eds) Database Systems for Advanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20149-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20149-3_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20148-6

  • Online ISBN: 978-3-642-20149-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics