Skip to main content

Real-Time Diameter Monitoring for Time-Evolving Graphs

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6587))

Included in the following conference series:

Abstract

The goal of this work is to identify the diameter, the maximum distance between any two nodes, of graphs that evolve over time. This problem is useful for many applications such as improving the quality of P2P networks. Our solution, G-Scale, can track the diameter of time-evolving graphs in the most efficient and correct manner. G-Scale is based on two ideas: (1) It estimates the maximal distances at any time to filter unlikely nodes that cannot be associated with the diameter, and (2) It maintains answer node pairs by exploiting the distances from a newly added node to other nodes. Our theoretical analyses show that G-Scale guarantees exactness in identifying the diameter. We perform several experiments on real and large datasets. The results show that G-Scale can detect the diameter significantly faster than existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://snap.stanford.edu/data/index.html

  2. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution technologies. ACM Comput. Surv. 36(4), 335–371 (2004)

    Article  Google Scholar 

  3. Bawa, M., Cooper, B.F., Crespo, A., Daswani, N., Ganesan, P., Garcia-Molina, H., Kamvar, S.D., Marti, S., Schlosser, M.T., Sun, Q., Vinograd, P., Yang, B.: Peer-to-peer research at stanford. SIGMOD Record 32(3), 23–28 (2003)

    Article  Google Scholar 

  4. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25, 163–177 (2001)

    Article  MATH  Google Scholar 

  5. Brandes, U., Erlebach, T.: Network Analysis: Methodological Foundations. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  7. Goldberg, A.V., Harrelson, C.: Computing the shortest path: search meets graph theory. In: SODA, pp. 156–165 (2005)

    Google Scholar 

  8. Koppula, H.S., Puspesh, K., Ganguly, N.: Study and improvement of robustness of overlay networks (2008)

    Google Scholar 

  9. Kumar, A., Merugu, S., Xu, J., Yu, X.: Ulysses: A robust, low-diameter, low-latency peer-ti-peer network. In: ICNP, pp. 258–267 (2003)

    Google Scholar 

  10. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. TKDD 1(1) (2007)

    Google Scholar 

  11. Magoni, D., Pansiot, J.J.: Analysis of the autonomous system network topology. SIGCOMM Comput. Commun. Rev. 31(3), 26–37 (2001)

    Article  MATH  Google Scholar 

  12. Newman: The structure and function of complex networks. SIREV: SIAM Review 45 (2003)

    Google Scholar 

  13. Ng, A.K.S., Efstathiou, J.: Structural robustness of complex networks. In: NetSci. (2006)

    Google Scholar 

  14. Ng, T.S.E., Zhang, H.: Predicting internet network distance with coordinates-based approaches. In: INFOCOM (2002)

    Google Scholar 

  15. Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in large networks. In: CIKM, pp. 867–876 (2009)

    Google Scholar 

  16. Ratnasamy, S., Stoica, I., Shenker, S.: Routing algorithms for dHTs: Some open questions. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 45–52. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Rattigan, M.J., Maier, M., Jensen, D.: Using structure indices for efficient approximation of network properties. In: KDD, pp. 357–366 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fujiwara, Y., Onizuka, M., Kitsuregawa, M. (2011). Real-Time Diameter Monitoring for Time-Evolving Graphs. In: Yu, J.X., Kim, M.H., Unland, R. (eds) Database Systems for Advanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20149-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20149-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20148-6

  • Online ISBN: 978-3-642-20149-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics