Wireless Sensor Resource Usage Optimisation Using Embedded State Predictors

  • David Lowe
  • Steve Murray
  • Xiaoying Kong
Part of the Communications in Computer and Information Science book series (CCIS, volume 130)


The increasing prevalence and sophistication of wireless sensors is creating an opportunity for improving, or in many cases enabling, the real-time monitoring and control of distributed physical systems. However, whilst a major issue in the use of these sensors is their resource utilisation, there has only been limited consideration given to the interplay between the data sampling requirements of the control and monitoring systems and the design characteristics of the wireless sensors. In this paper we describe an approach to the optimization of the resources utilized by these devices based on the use of synchronized state predictors. By embedding state predictors into the sensors themselves it becomes possible for the sensors to predict their optimal sampling rate consistent with maintaining monitoring or control performance, and hence minimize the utilization of limited sensor resources such as power and bandwidth.


Wireless sensor networks State observers Control Optimisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Delin, K.A.: The sensor web: A macro-instrument for coordinated sensing. Sensors 2, 270–285 (2002)CrossRefGoogle Scholar
  2. 2.
    Baronti, P., Pillai, P., Chook, V.W.C., Chessa, S., Gotta, A., Hu, Y.F.: Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and zigbee standards. Computer Communications 30, 1655–1695 (2007)CrossRefGoogle Scholar
  3. 3.
    Li, Y., Thai, M.T., Wu, W.: Wireless Sensor Networks and Applications. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    The zigbee alliance (2008),
  5. 5.
    Anastasi, G., Conti, M., Francesco, M.D., Passarella, A.: Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks 7, 537–568 (2009)CrossRefGoogle Scholar
  6. 6.
    Yang, Z., Liao, S., Cheng, W.: Joint power control and rate adaptation in wireless sensor networks. Ad Hoc Networks 7, 401–410 (2009)CrossRefGoogle Scholar
  7. 7.
    Nair, G.N., Fagnani, F., Zampieri, S., Evans, R.J.: Feedback control under data rate constraints: An overview. Proceedings of the IEEE 95, 108–137 (2007)CrossRefGoogle Scholar
  8. 8.
    Estrada, T., Antsaklis, P.: Stability of model-based networked control systems with intermittent feedback. In: Proceedings of the 15th IFAC World Congress, Seoul, Korea (2008)Google Scholar
  9. 9.
    Guo, G., Liu, X.P.: Observability and controllability of systems with limited data rate. International Journal of Systems Science 40, 327–334 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hristu-Varsakelis, D., Zhang, L.: Lqg control of networked control systems with access constraints and delays. International Journal of Control (81), 1266–1280Google Scholar
  11. 11.
    Eker, J., Hagander, P., Arzen, K.: A feedback scheduler for real-time controller tasks. Control Engineering Practice 8, 1369–1378 (2000)CrossRefGoogle Scholar
  12. 12.
    Sun, Y.L., Ghantasala, S., El-Farra, N.H.: Networked control of spatially distributed processes with sensor-controller communication constraints. In: 2009 American Control Conference, St Louis, MO, USA, pp. 2489–2494. IEEE, Los Alamitos (2009)CrossRefGoogle Scholar
  13. 13.
    Lowe, D., Murray, S.: Wireless sensor network optimisation through control-theoretic adaptation of sample rates. In: First International Conference on Sensor Network and Applications, SNA 2009, pp. 73–78 (2009)Google Scholar
  14. 14.
    Ding, F., Chen, T.: Modeling and identification for multirate systems. Acta Automatica Sinica 31, 105–122 (2005)MathSciNetGoogle Scholar
  15. 15.
    Sezer, M.E., Siljak, D.D.: Decentralized multirate control. IEEE Transactions on Automatic Control 35, 60–65 (1990)CrossRefzbMATHGoogle Scholar
  16. 16.
    de la Sen, M.: The reachability and observability of hybrid multirate sampling linear systems. Computers and Mathematics with Applications 31, 109–122 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    De la Sen, M.: Algebraic properties and design of sampling rates in hybrid linear systems under multirate sampling. Acta Applicandae Mathematicae 72, 199–245 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kawka, P.A., Alleyne, A.G.: Stability and feedback control of wireless networked systems. In: Proceedings of the 2005 American Control Conference, Portland, OR, USA, AACC, pp. 2953–2959 (2005)Google Scholar
  19. 19.
    Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic Control 52, 1680–1685 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Velasco, M., Fuertes, J., Marti, P.: The self triggered task model for real-time control systems. In: 24th IEEE Real-Time Systems Symposium (2003)Google Scholar
  21. 21.
    Ellis, G.: Observers in Control Systems: A Practical Guide. Academic Press, London (2002)Google Scholar
  22. 22.
    Ishwar, P., Kumar, A., Ramchandran, K.: Distributed sampling for dense sensor networks: A” bit-conservation principle”. In: Proceedings Of The Annual Allerton Conference On Communication Control And Computing, vol. 41, pp. 80–89. Springer, Heidelberg (2003)Google Scholar
  23. 23.
    Li, H., Fang, J.: Distributed adaptive quantization and estimation for wireless sensor networks. IEEE Signal Processing Letters 14, 669–672 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • David Lowe
    • 1
  • Steve Murray
    • 1
  • Xiaoying Kong
    • 1
  1. 1.Centre for Real-Time Information NetworksUniversity of Technology SydneySydneyAustralia

Personalised recommendations