Skip to main content

Exploiting Crosstalk Effects in FPGAs for Generating True Random Numbers

  • Conference paper
e-Business and Telecommunications (ICETE 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 130))

Included in the following conference series:

Abstract

This paper presents a new method for implementing TRNGs in FPGA devices, which relies on filling a region or the whole FPGA chip close to its maximal capacity and exploiting the interconnection network as intensely as possible. This way, there are strong chances for the design to exhibit a nondeterministic behavior. Our first design is a computationally intensive core that generates 64-bit numbers, accumulated into a fixed-point accumulator. The bits that exhibit the maximal entropy are then post-processed using the XOR-based bias reduction method. We prove that the resulting TRNG provides high quality random numbers. An explanation of the underlying phenomenon is proposed, based on electromagnetic interferences inside the chip and crosstalk effects. A systematic method for developing TRNG designs based on this approach is proposed and an improved TRNG architecture is then presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marsaglia, G.: DIEHARD: Battery of Tests of Randomness (1996), http://stat.fsu.edu/pub/diehard/

  2. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST Special Publication 800-22 (with revisions dated May 15, 2001) (2001), http://csrc.nist.gov/rng/SP800-22b.pdf

  3. L’Ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random number generators. ACM Transactions on Mathematical Software 33(4), 22 (2007)

    Article  MathSciNet  Google Scholar 

  4. Drutarovsky, M., Galajda, P.: A robust chaos-based true random number generator embedded in reconfigurable switched-capacitor hardware. Radioelektronika (April 2007)

    Google Scholar 

  5. Gentle, E.J.: Random Number Generation and Monte Carlo Methods. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  6. Kohlbrenner, P., Gaj, K.: An Embedded True Random Number Generator for FPGAs. In: Proceedings of the ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays, Monterey, California, pp. 71–78 (2004)

    Google Scholar 

  7. Schellekens, D., Preneel, B., Verbauwhede, I.: FPGA Vendor Agnostic True Random Number Generator. In: Proceedings of the International Conference on Field Programmable Logic and Applications, Madrid, pp. 1–6 (2006)

    Google Scholar 

  8. Jun, B., Kocher, P.: The Intel Random Number Generator. Cryptography Research, Inc. White Paper prepared for Intel Corporation (1999), http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf

  9. Drutarovsky, M., Galajda, P.: Chaos-based true random number generator embedded in a mixed-signal reconfigurable hardware. Journal of Electrical Engineering 57(4), 218–225 (2006)

    Google Scholar 

  10. FloPoCo project (2007), http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

  11. Creţ, O., Trestian, I., De Dinechin, F., Darabant, L., Tudoran, R., Văcariu, L.: Accelerating The Computation of The Physical Parameters Involved in Transcranial Magnetic Stimulation Using FPGA Devices. Romanian Journal of Information, Science and Technology 10(4), 361–379 (2008)

    Google Scholar 

  12. De Dinechin, F., Detrey, J., Creţ, O., Tudoran, R.: When FPGAs are better at floating-point than microprocessors. In: Sixteenth ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Monterey, California (2008)

    Google Scholar 

  13. Fischer, V., Drutarovsky, M.: True random number generator embedded in reconfigurable hardware. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 415–430. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Thompson, A.: An evolved circuit, intrinsic in silicon, entwined with physics. In: Higuchi, T., Iwata, M., Weixin, L. (eds.) ICES 1996. LNCS, vol. 1259, pp. 390–405. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  15. Thompson, A., Layzell, P.: Analysis of Unconventional Evolved Electronics. Communications of the ACM 42(4), 71–79 (1999)

    Article  Google Scholar 

  16. The CryptoRand project (2010), http://cryptorand.utcluj.ro

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Creţ, O., Tudoran, R., Suciu, A., Györfi, T. (2011). Exploiting Crosstalk Effects in FPGAs for Generating True Random Numbers. In: Obaidat, M.S., Filipe, J. (eds) e-Business and Telecommunications. ICETE 2009. Communications in Computer and Information Science, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20077-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20077-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20076-2

  • Online ISBN: 978-3-642-20077-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics