Advertisement

Stochastic Modeling and Statistical Inferences of Adaptive Antennas in Wireless Communications

  • Blagovest Shishkov
Part of the Communications in Computer and Information Science book series (CCIS, volume 130)

Abstract

Wireless Ad-hoc networks can be considered as a means of linking portable user terminals that meet temporarily in locations where connection to a network infrastructure is difficult. Hence, techniques are needed that contribute to the development of high-performance receiving antennas with the capability of automatically eliminating surrounding interference. Solutions to this problem for the conventional linear antenna arrays meet nevertheless complex architectures resulting in high power dissipation. We consider in the current paper novel algorithms for the analog aerial beamforming of a reactively controlled adaptive antenna array as a non-linear spatial filter by variable parameters. Being based on the Stochastic Approximation Theory, such algorithms have great potentials for use in mobile terminals and provide therefore important support for wireless communication networks. The resulting unconventional adaptive antennas can lead to dramatically simplified architectures leading in turn to significantly lower power dissipation and fabrication costs.

Keywords

Adaptive beamforming ESPAR antenna Wireless Ad-hoc-community networks Interference reduction Stochastic approximation Rate of convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ohira, T.: Reactance-Domain Signal Processing for ESPAR Antennas. ATR Journal, Japan (9), 9–11 (2005)Google Scholar
  2. 2.
    Shishkov, B., Ohira, T.: Adaptive Beamforming of ESPAR Antenna Based on Stochastic Approximation Theory, Technical Report of IEICE. CS2001– 40, RCS2001– 47, pp. 41–48 (2001)Google Scholar
  3. 3.
    Shishkov, B., Cheng, J., Ohira, T.: Adaptive Beamforming for the ESPAR Antenna - Unconventional Approach. In: Proc. of the 2001 International Symposium on Signals, Systems, and Electronics, ISSSE 2001, Japan, pp. 412–415 (2001)Google Scholar
  4. 4.
    Shishkov, B., Ohira, T.: Adaptive Beamforming for the ESPAR Antenna Based on Stochastic Approximation Theory. In: Proc. of the APMC 2001, Taiwan, pp. 597–600 (2001)Google Scholar
  5. 5.
    Shishkov, B., Ohira, T.: Adaptive Control Algorithm for the ESPAR Antenna. ATR Journal, Japan, 24–25 (2001)Google Scholar
  6. 6.
    Hasuike, K., Bandyopadyay, S., Horisawa, S., Tawara, S., Gyoda, K., Ohira, T.: Wacnet – Ad-Hoc Network With Adaptive Antennas. In: Proc. of the ISSSE 2001, Japan, pp. 271–274 (2001)Google Scholar
  7. 7.
    Kenichi, M.: Expectations for Ad Hoc Networks. ATR Journal, Japan (9), 3–4 (2005)Google Scholar
  8. 8.
    Harrington, R.: Reactively Controlled Directive Arrays. IEEE Trans. on Antennas and Propagation AP-26(3), 390–395 (1978)CrossRefGoogle Scholar
  9. 9.
    Dinger, R.: Reactively Steered Adaptive Array Using Microstrip Patch Elements At 4ghz. IEEE Trans. on Antennas and Propagation AP-32(8), 848–856 (1984)CrossRefGoogle Scholar
  10. 10.
    Scott, N., Leonard-Taylor, M., Vaughan, R.: Diversity Gain From A Single-Port Adaptive Antenna Using Switched Parasitic Elements. IEEE Trans. on AP 47(6), 1066–1070 (1999)CrossRefGoogle Scholar
  11. 11.
    Shishkov, B., Cheng, J., Ohira, T.: Adaptive Beamforming of ESPAR Antenna - Unconventional Approach. IEICE Transactions on Electronics E85-C(3), 452–457 (2002)Google Scholar
  12. 12.
    Shishkov, B., Cheng, J., Ohira, T.: Adaptive Control Algorithm for the ESPAR Antenna Based on Stochastic Approximation Theory. IEICE Transactions on Communications E85-B(4), 802–811 (2002)Google Scholar
  13. 13.
    Darken, C., Moody, J.: Towards Faster Stochastic Gradient Search. In: Advances in Neural Information Processing Systems, vol. 4, pp. 1009–1016. Morgan Kaufmann, San Mateo (1992)Google Scholar
  14. 14.
    Shishkov, B.: Beamforming of Reactively Controled Adaptive Antenna Array Based on Cyclostationary Signal Properties. Comptes Rendus de l’Academie bulgare des Sciences, Tome 58(10), 1163–1168 (2005)Google Scholar
  15. 15.
    Shishkov, B., Tsuji, H., Xin, J., Hase, Y.: Spatial and Temporal Processing of Cyclostationary Signals in Array Antennas Based on Linear Prediction Model. In: Proc. of the Telecommunications Advancement Organization (TAO) of Japan, pp. 1–34 (1998)Google Scholar
  16. 16.
    Taillefer, E., Cheng, J.: Reactance-Domain Signal Processing for Adaptive Beamforming and Direction-of-Arrival Estimation: An Overview. URSI Radio Science Bulletin (323), 14–25 (2007)Google Scholar
  17. 17.
    Shishkov, B., Hashimoto, K., Matsumoto, H., Shinohara, N., Mitani, T.: Direction Finding Estimators of Cyclostationary Signals in Array Processing for Microwave Power Transmission. Pliska Stud. Math. Bulgar. 19, 245–268 (2009)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Blagovest Shishkov
    • 1
  1. 1.Institute of Mathematics & InformaticsBulgarian Academy of Sciences Acad.SofiaBulgaria

Personalised recommendations