Skip to main content

A Bayesian Approach for Determining Protein Side-Chain Rotamer Conformations Using Unassigned NOE Data

  • Conference paper
  • 1240 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6577))

Abstract

A major bottleneck in protein structure determination via nuclear magnetic resonance (NMR) is the lengthy and laborious process of assigning resonances and nuclear Overhauser effect (NOE) cross peaks. Recent studies have shown that accurate backbone folds can be determined using sparse NMR data, such as residual dipolar couplings (RDCs) or backbone chemical shifts. This opens a question of whether we can also determine the accurate protein side-chain conformations using sparse or unassigned NMR data. We attack this question by using unassigned nuclear Overhauser effect spectroscopy (NOESY) data, which record the through-space dipolar interactions between protons nearby in 3D space. We propose a Bayesian approach with a Markov random field (MRF) model to integrate the likelihood function derived from observed experimental data, with prior information (i.e., empirical molecular mechanics energies) about the protein structures. We unify the side-chain structure prediction problem with the side-chain structure determination problem using unassigned NMR data, and apply the deterministic dead-end elimination (DEE) and A* search algorithms to provably find the global optimum solution that maximizes the posterior probability. We employ a Hausdorff-based measure to derive the likelihood of a rotamer or a pairwise rotamer interaction from unassigned NOESY data. In addition, we apply a systematic and rigorous approach to estimate the experimental noise in NMR data, which also determines the weighting factor of the data term in the scoring function that is derived from the Bayesian framework. We tested our approach on real NMR data of three proteins, including the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), and human ubiquitin. The promising results indicate that our approach can be applied in high-resolution protein structure determination. Since our approach does not require any NOE assignment, it can accelerate the NMR structure determination process.

This work is supported by the following grants from National Institutes of Health: R01 GM-65982 and R01 GM-78031 to B.R.D. and R01 GM-079376 to P.Z.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrec, M., et al.: Proteins 69(3), 449–465 (2007)

    Article  Google Scholar 

  2. Besag, J.: J. Royal Stat. Soc. B 36 (1974)

    Google Scholar 

  3. Bower, M.J., et al.: J. Mol. Biol. 267(5), 1268–1282 (1997)

    Article  Google Scholar 

  4. Bowers, P.M., et al.: J. Biomol. NMR 18(4), 311–318 (2000)

    Article  Google Scholar 

  5. Brünger, A.T.: Nature 355(6359), 472–475 (1992)

    Article  Google Scholar 

  6. Brünger, A.T., et al.: Science 261(5119), 328–331 (1993)

    Article  Google Scholar 

  7. Cavalli, A., et al.: Proc. Natl. Acad. Sci. USA 104(23), 9615–9620 (2007)

    Article  Google Scholar 

  8. Chazelle, B., et al.: INFORMS J. on Computing 16(4), 380–392 (2004)

    Article  MathSciNet  Google Scholar 

  9. Chen, C.Y., et al.: Proc. Natl. Acad. Sci. USA 106, 3764–3769 (2009)

    Article  Google Scholar 

  10. De Pristo, M.A., et al.: Structure 12(5), 831–838 (2004)

    Article  Google Scholar 

  11. Desmet, J., et al.: Nature 356, 539–542 (1992)

    Article  Google Scholar 

  12. Donald, B.R., Martin, J.: Progress in NMR Spectroscopy 55, 101–127 (2009)

    Article  Google Scholar 

  13. Frey, K.M., et al.: Proc. Natl. Acad. Sci. USA 107(31), 13707–13712 (2010)

    Article  Google Scholar 

  14. Geman, S., Geman, D.: IEEE Trans. Pattern Anal. Mach. Intell., 721–741 (1984)

    Google Scholar 

  15. Georgiev, I., et al.: Journal of Computational Chemistry 29, 1527–1542 (2008)

    Article  Google Scholar 

  16. Goldstein, R.F.: Biophysical Journal 66, 1335–1340 (1994)

    Article  Google Scholar 

  17. Grishaev, A., Llinás, M.: Proc. Natl. Acad. Sci. USA 99, 6707–6712 (2002)

    Article  Google Scholar 

  18. Grishaev, A., Llinás, M.: Proc. Natl. Acad. Sci. USA 99, 6713–6718 (2002)

    Article  Google Scholar 

  19. Güntert, P.: Progress in Nuclear Magnetic Resonance Spectroscopy 43, 105–125 (2003)

    Article  Google Scholar 

  20. Habeck, M., et al.: Proc. Natl. Acad. Sci. USA 103(6), 1756–1761 (2006)

    Article  MathSciNet  Google Scholar 

  21. Herrmann, T., et al.: Journal of Molecular Biology 319(1), 209–227 (2002)

    Article  Google Scholar 

  22. Holm, L., Sander, C.: Proteins 14(2), 213–223 (1992)

    Article  Google Scholar 

  23. Huang, Y.J., et al.: Proteins 62(3), 587–603 (2006)

    Article  Google Scholar 

  24. Hus, J.C., et al.: J. Am. Chem. Soc. 123(7), 1541–1542 (2001)

    Article  Google Scholar 

  25. Huttenlocher, D.P., Kedem, K.: Distance Metrics for Comparing Shapes in the Plane. In: Donald, B.R., et al. (eds.) Symbolic and Numerical Computation for Artificial Intelligence, pp. 201–219. Academic press, London (1992)

    Google Scholar 

  26. Huttenlocher, D.P., et al.: IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)

    Article  Google Scholar 

  27. Hwang, J.K., Liao, W.F.: Protein Eng. 8(4), 363–370 (1995)

    Article  Google Scholar 

  28. Jeffreys, H.: Proceedings of the Royal Society of London (Series A) 186, 453–461 (1946)

    Article  MathSciNet  Google Scholar 

  29. Kamisetty, H., et al.: Journal of Computational Biology 15, 755–766 (2008)

    Article  MathSciNet  Google Scholar 

  30. Kingsford, C.L., et al.: Bioinformatics 21(7), 1028–1036 (2005)

    Article  Google Scholar 

  31. Koehl, P., Delarue, M.: J. Mol. Biol. 239(2), 249–275 (1994)

    Article  Google Scholar 

  32. Koradi, R., et al.: J. Mol. Graph. 14(1) (1996)

    Google Scholar 

  33. Kraulis, P.J.: J. Mol. Biol. 243(4), 696–718 (1994)

    Article  Google Scholar 

  34. Krivov, G.G., et al.: Proteins 77(4), 778–795 (2009)

    Article  Google Scholar 

  35. Kuszewski, J., et al.: J. Am. Chem. Soc. 126(20), 6258–6273 (2004)

    Article  Google Scholar 

  36. Langmead, C.J., Donald, B.R.: J. Biomol. NMR 29(2), 111–138 (2004)

    Article  Google Scholar 

  37. Lazaridis, T., Karplus, M.: Proteins 35(2), 133–152 (1999)

    Article  Google Scholar 

  38. Leach, A.R., Lemon, A.P.: Proteins 33(2), 227–239 (1998)

    Article  Google Scholar 

  39. Li, S.Z.: Markov random field modeling in computer vision. Springer, London (1995)

    Book  Google Scholar 

  40. Linge, J.P., et al.: Bioinformatics 19(2), 315–316 (2003)

    Article  MathSciNet  Google Scholar 

  41. Looger, L.L., Hellinga, H.W.: J. Mol. Biol. 3007(1), 429–445 (2001)

    Article  Google Scholar 

  42. Lovell, S.C., et al.: Proteins: Structure Function and Genetics 40, 389–408 (2000)

    Article  Google Scholar 

  43. Meiler, J., Baker, D.: Proc. Natl. Acad. Sci. USA 100(26), 15404–15409 (2003)

    Article  Google Scholar 

  44. Meiler, J., Baker, D.: J. Magn. Reson. 173(2), 310–316 (2005)

    Article  Google Scholar 

  45. Pierce, N.A., Winfree, E.: Protein Eng. 15(10), 779–782 (2002)

    Article  Google Scholar 

  46. Raman, S., et al.: J. Am. Chem. Soc. 132(1), 202–207 (2010)

    Article  Google Scholar 

  47. Raman, S., et al.: Science 327(5968), 1014–1018 (2010)

    Article  Google Scholar 

  48. Rieping, W., et al.: Science 309, 303–306 (2005)

    Article  Google Scholar 

  49. Rohl, C.A., et al.: Proteins 55(3), 656–677 (2004)

    Article  Google Scholar 

  50. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  51. Shen, Y., et al.: Proc. Natl. Acad. Sci. USA 105(12), 4685–4690 (2008)

    Article  Google Scholar 

  52. Tuffery, P., et al.: J. Biomol. Struct. Dyn. 8(6), 1267–1289 (1991)

    Article  Google Scholar 

  53. Wang, L., Donald, B.R.: Jour. Biomolecular NMR 29(3), 223–242 (2004)

    Article  Google Scholar 

  54. Wang, L., et al.: Journal of Computational Biology 13(7), 1276–1288 (2006)

    Article  Google Scholar 

  55. Word, J.M., et al.: J. Mol. Biol. 285(4), 1735–1747 (1999)

    Article  Google Scholar 

  56. Xiang, Z., Honig, B.: J. Mol. Biol. 311(2), 421–430 (2001)

    Article  Google Scholar 

  57. Xu, J., Berger, B.: Journal of the ACM 53(4), 533–557 (2006)

    Article  MathSciNet  Google Scholar 

  58. Yanover, C., Weiss, Y.: In: NIPS (2002)

    Google Scholar 

  59. Zeng, J., et al.: Journal of Biomolecular NMR 45(3), 265–281 (2009)

    Article  Google Scholar 

  60. Zeng, J., et al. A Bayesian Approach for Determining Protein Side-Chain Rotamer Conformations Using Unassigned NOE Data–Supplementary Material (2011), http://www.cs.duke.edu/donaldlab/Supplementary/recomb11/bayesian/

  61. Zeng, J., et al. In: Proceedings of CSB 2008, Stanford CA (2008) PMID: 19122773

    Google Scholar 

  62. Zeng, J., et al.: A markov random field framework for protein side-chain resonance assignment. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 550–570. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeng, J., Roberts, K.E., Zhou, P., Donald, B.R. (2011). A Bayesian Approach for Determining Protein Side-Chain Rotamer Conformations Using Unassigned NOE Data. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20036-6_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20035-9

  • Online ISBN: 978-3-642-20036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics