Skip to main content

Efficient Traversal of Beta-Sheet Protein Folding Pathways Using Ensemble Models

  • Conference paper
  • 1248 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6577))

Abstract

Molecular Dynamics (MD) simulations can now predict ms-timescale folding processes of small proteins — however, this presently requires hundreds of thousands of CPU hours and is primarily applicable to short peptides with few long-range interactions. Larger and slower-folding proteins, such as many with extended β-sheet structure, would require orders of magnitude more time and computing resources. Furthermore, when the objective is to determine only which folding events are necessary and limiting, atomistic detail MD simulations can prove unnecessary. Here, we introduce the program tFolder as an efficient method for modelling the folding process of large β-sheet proteins using sequence data alone. To do so, we extend existing ensemble β-sheet prediction techniques, which permitted only a fixed anti-parallel β-barrel shape, with a method that predicts arbitrary β-strand/β-strand orientations and strand-order permutations. By accounting for all partial and final structural states, we can then model the transition from random coil to native state as a Markov process, using a master equation to simulate population dynamics of folding over time. Thus, all putative folding pathways can be energetically scored, including which transitions present the greatest barriers. Since correct folding pathway prediction is likely determined by the accuracy of contact prediction, we demonstrate the accuracy of tFolder to be comparable with state-of-the-art methods designed specifically for the contact prediction problem alone. We validate our method for dynamics prediction by applying it to the folding pathway of the well-studied Protein G. With relatively very little computation time, tFolder is able to reveal critical features of the folding pathways which were only previously observed through time-consuming MD simulations and experimental studies. Such a result greatly expands the number of proteins whose folding pathways can be studied, while the algorithmic integration of ensemble prediction with Markovian dynamics can be applied to many other problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dobson, C.M.: Protein folding and misfolding. Nature 426(6968), 884–890 (2003)

    Article  Google Scholar 

  2. Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9(9), 646–652 (2002)

    Article  Google Scholar 

  3. Faccioli, P., Sega, M., Pederiva, F., Orland, H.: Dominant pathways in protein folding. Phys. Rev. Lett. 97(10), 108101 (2006)

    Article  Google Scholar 

  4. Voelz, V.A., Bowman, G.R., Beauchamp, K., Pande, V.S.: Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39). J. Am. Chem. Soc. 132(5), 1526–1528 (2010)

    Article  Google Scholar 

  5. Levitt, M., Warshel, A.: Computer simulation of protein folding. Nature 253(5494), 694–698 (1975)

    Article  Google Scholar 

  6. Tapia, L., Thomas, S., Amato, N.M.: A motion planning approach to studying molecular motions. Communications in Information and Systems 10(1), 53–68 (2010)

    Article  MATH  Google Scholar 

  7. Amato, N.M., Song, G.: Using motion planning to study protein folding pathways. J. Comput. Biol. 9(2), 149–168 (2002)

    Article  Google Scholar 

  8. Hosur, R., Singh, R., Berger, B.: Sparse estimation for structural variability. Algorithms Mol. Biol. (2011)

    Google Scholar 

  9. McCaskill, J.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119 (1990)

    Article  Google Scholar 

  10. Ding, Y., Lawrence, C.E.: A bayesian statistical algorithm for RNA secondary structure prediction. Comput. Chem. 23(3-4), 387–400 (1999)

    Article  Google Scholar 

  11. Turner, D.H., Mathews, D.H.: NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 38(Database issue), 280–282 (2010)

    Article  Google Scholar 

  12. Wolfinger, M.T., Andreas Svrcek-Seiler, W.A., Flamm, C., Hofacker, I.L., Stadler, P.F.: Efficient computation of RNA folding dynamics. Journal of Physics A: Mathematical and General 37(17) (2004)

    Google Scholar 

  13. Tang, X., Thomas, S., Tapia, L., Giedroc, D.P., Amato, N.M.: Simulating RNA folding kinetics on approximated energy landscapes. J. Mol. Biol. 381(4), 1055–1067 (2008)

    Article  Google Scholar 

  14. Mamitsuka, H., Abe, N.: Predicting location and structure of beta-sheet regions using stochastic tree grammars. In: ISMB, pp. 276–284 (1994)

    Google Scholar 

  15. Chiang, D., Joshi, A.K., Searls, D.B.: Grammatical representations of macromolecular structure. J. Comput. Biol. 13(5), 1077–1100 (2006)

    Article  MathSciNet  Google Scholar 

  16. Kato, Y., Akutsu, T., Seki, H.: Dynamic programming algorithms and grammatical modeling for protein beta-sheet prediction. J. Comput. Biol. 16(7), 945–957 (2009)

    Article  MathSciNet  Google Scholar 

  17. Tran, V.D., Chassignet, P., Sheikh, S., Steyaert, J.M.: Energy-based classification and structure prediction of transmembrane beta-barrel proteins. In: Proceedings of the First IEEE International Conference on Computational Advances in Bio and medical Sciences (ICCABS) (2011)

    Google Scholar 

  18. Waldispühl, J., O’Donnell, C.W., Devadas, S., Clote, P., Berger, B.: Modeling ensembles of transmembrane beta-barrel proteins. Proteins 71(3), 1097–1112 (2008)

    Article  Google Scholar 

  19. Waldispühl, J., Steyaert, J.M.: Modeling and predicting all-alpha transmembrane proteins including helix-helix pairing. Theor. Comput. Sci. 335(1), 67–92 (2005)

    Article  MATH  Google Scholar 

  20. Waldispühl, J., Berger, B., Clote, P., Steyaert, J.M.: Predicting transmembrane beta-barrels and interstrand residue interactions from sequence. Proteins 65(1), 61–74 (2006)

    Article  Google Scholar 

  21. Cowen, L., Bradley, P., Menke, M., King, J., Berger, B.: Predicting the beta-helix fold from protein sequence data. J. Comput. Bio.l, 261–276 (2001)

    Google Scholar 

  22. Ding, Y., Lawrence, C.E.: A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 31, 7280–7301 (2003)

    Article  Google Scholar 

  23. Cheng, J., Baldi, P.: Improved residue contact prediction using support vector machines and a large feature set. BMC Bioinformatics 8, 113 (2007)

    Article  Google Scholar 

  24. Zemla, A., Venclovas, C., Fidelis, K., Rost, B.: A modified definition of sov, a segment-based measure for protein secondary structure prediction assessment. Proteins 34(2), 220–223 (1999)

    Article  Google Scholar 

  25. Moulton, V., Zuker, M., Steel, M., Pointon, R., Penny, D.: Metrics on RNA secondary structures. J. Comput. Biol. 7, 277–292 (2000)

    Article  Google Scholar 

  26. Song, G., Thomas, S., Dill, K.A., Scholtz, J.M., Amato, N.M.: A path planning-based study of protein folding with a case study of hairpin formation in protein G and L. Pac. Symp. Biocomput., 240–251 (2003)

    Google Scholar 

  27. Hubner, I.A., Shimada, J., Shakhnovich, E.I.: Commitment and nucleation in the protein G transition state. J. Mol. Biol. 336, 745–761 (2004)

    Article  Google Scholar 

  28. Fulton, K.F., Devlin, G.L., Jodun, R.A., Silvestri, L., Bottomley, S.P., Fersht, A.R., Buckle, A.M.: PFD: a database for the investigation of protein folding kinetics and stability. Nucleic Acids Res. 33(Database issue), D279–D283 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shenker, S., O’Donnell, C.W., Devadas, S., Berger, B., Waldispühl, J. (2011). Efficient Traversal of Beta-Sheet Protein Folding Pathways Using Ensemble Models. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20036-6_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20035-9

  • Online ISBN: 978-3-642-20036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics