Skip to main content

Design of Protein-Protein Interactions with a Novel Ensemble-Based Scoring Algorithm

  • Conference paper
Book cover Research in Computational Molecular Biology (RECOMB 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6577))

Abstract

Protein-protein interactions (PPIs) are vital for cell signaling, protein trafficking and localization, gene expression, and many other biological functions. Rational modification of PPI targets provides a mechanism to understand their function and importance. However, PPI systems often have many more degrees of freedom and flexibility than the small-molecule binding sites typically targeted by protein design algorithms. To handle these challenging design systems, we have built upon the computational protein design algorithm K * [8,19] to develop a new design algorithm to study protein-protein and protein-peptide interactions. We validated our algorithm through the design and experimental testing of novel peptide inhibitors.

Previously, K * required that a complete partition function be computed for one member of the designed protein complex. While this requirement is generally obtainable for active-site designs, PPI systems are often much larger, precluding the exact determination of the partition function. We have developed proofs that show that the new K * algorithm combinatorially prunes the protein sequence and conformation space and guarantees that a provably-accurate ε-approximation to the K * score can be computed. These new proofs yield new algorithms to better model large protein systems, which have been integrated into the K * code base.

K * computationally searches for sequence mutations that will optimize the affinity of a given protein complex. The algorithm scores a single protein complex sequence by computing Boltzmann-weighted partition functions over structural molecular ensembles and taking a ratio of the partition functions to find provably-accurate ε-approximations to the K * score, which predicts the binding constant. The K * algorithm uses several provable methods to guarantee that it finds the gap-free optimal sequences for the designed protein complex. The algorithm allows for flexible minimization during the conformational search while still maintaining provable guarantees by using the minimization-aware dead-end elimination criterion, minDEE. Further pruning conditions are applied to fully explore the sequence and conformation space.

To demonstrate the ability of K * to design protein-peptide interactions, we applied the ensemble-based design algorithm to the CFTR-associated ligand, CAL, which binds to the C-terminus of CFTR, the chloride channel mutated in human patients with cystic fibrosis. K * was retrospectively used to search over a set of peptide ligands that can inhibit the CAL-CFTR interaction, and K * successfully enriched for peptide inhibitors of CAL. We then used K * to prospectively design novel inhibitor peptides. The top-ranked K *-designed peptide inhibitors were experimentally validated in the wet lab and, remarkably, all bound with μM affinity. The top inhibitor bound with seven-fold higher affinity than the best hexamer peptide inhibitor previously available and with 331-fold higher affinity than the CFTR C-terminus.

Abbreviations used: PPI, protein-protein interaction; CFTR, Cystic fibrosis transmembrane conductance regulator; CAL, CFTR-associated ligand; DEE, Dead-end elimination; MC, Monte Carlo; CF, cystic fibrosis; NHERF1, Na + /H +  Exchanger Regulatory Factor 1; GMEC, global minimum energy conformation; BLU, biochemical light unit; ROC, receiver operating curve; AUC, area under the curve.

This work is supported by the following grants from the National Institutes of Health: R01 GM-78031 to B.R.D. and R01 DK075309 to D.R.M.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althaus, E., et al.: Journal of Computational Biology 9(4), 597–612 (2002)

    Article  Google Scholar 

  2. Altman, M.D., et al.: Proteins 70(3), 678–694 (2008)

    Article  Google Scholar 

  3. Berezovsky, I.N., et al.: PLoS Comput. Biol. 1(4), e47 (2005)

    Article  Google Scholar 

  4. Brannetti, B., Helmer-Citterich, M.: Nucleic Acids Res. 31(13), 3709–3711 (2003)

    Article  Google Scholar 

  5. Brooks, B.R., et al.: Journal of Computational Chemistry 4(2), 187–217 (1983)

    Article  Google Scholar 

  6. Case, D.A., et al.: Journal of Computational Chemistry 26(16), 1668–1688 (2005)

    Article  Google Scholar 

  7. Chazelle, B., et al.: INFORMS Journal on Computing 16(4), 380–392 (2004)

    Article  MathSciNet  Google Scholar 

  8. Chen, C., et al.: Proc. Natl. Acad. Sci. USA 106(10), 3764–3769 (2009)

    Article  Google Scholar 

  9. Cushing, P.R., et al.: Biochemistry 47(38), 10084–10098 (2008)

    Article  Google Scholar 

  10. Dahiyat, B.I., Mayo, S.L.: Protein Science 5(5), 895–903 (1996)

    Article  Google Scholar 

  11. Dahiyat, B.I., Mayo, S.L.: Science 278(5335), 82–87 (1997)

    Article  Google Scholar 

  12. Desjarlais, J.R., Handel, T.M.: Protein Science 4(10), 2006–2018 (1995)

    Article  Google Scholar 

  13. Desmet, J., et al.: Nature 356(6369), 539–542 (1992)

    Article  Google Scholar 

  14. Dunbrack, R.L., Karplus, M.: J. Mol. Biol. 230(2), 543–574 (1993)

    Article  Google Scholar 

  15. Frey, K.M., et al.: Proc. Natl. Acad. Sci. USA 107(31), 13707–13712 (2010)

    Article  Google Scholar 

  16. Fromer, M., Yanover, C.: Bioinformatics 24(13), i214–i222 (2008)

    Article  Google Scholar 

  17. Gainza, P., Roberts, K.E., Donald, B.R. (2011) (submitted)

    Google Scholar 

  18. Georgiev, I., et al.: Bioinformatics 22(14), e174–e183 (2006)

    Article  Google Scholar 

  19. Georgiev, I., et al.: Journal of Computational Chemistry 29(10), 1527–1542 (2008)

    Article  MathSciNet  Google Scholar 

  20. Gilson, M., et al.: Biophysical Journal 72(3), 1047–1069 (1997)

    Article  Google Scholar 

  21. Goldstein, R.: Biophysical Journal 66(5), 1335–1340 (1994)

    Article  Google Scholar 

  22. Gorczynski, M.J., et al.: Chemistry & Biology 14(10), 1186–1197 (2007)

    Article  Google Scholar 

  23. Gordon, D.B., Mayo, S.L.: Structure 7(9), 1089–1098 (1999)

    Article  Google Scholar 

  24. Gordon, D.B., et al.: Journal of Computational Chemistry 24(2), 232–243 (2003)

    Article  Google Scholar 

  25. Guggino, W.B., Stanton, B.A.: Nature Reviews. Molecular Cell Biology 7(6), 426–436 (2006)

    Google Scholar 

  26. Hong, E., et al.: Journal of Computational Chemistry 30(12), 1923–1945 (2009)

    Article  Google Scholar 

  27. Janin, J., Wodak, S.: Journal of Molecular Biology 125(3), 357–386 (1978)

    Article  Google Scholar 

  28. Jiang, X., et al.: Protein Science 9(2), 403–416 (2000)

    Article  MathSciNet  Google Scholar 

  29. Joachimiak, L.A., et al.: Journal of Molecular Biology 361(1), 195–208 (2006)

    Article  Google Scholar 

  30. Jones, D.T.: Protein Science 3(4), 567–574 (1994)

    Article  Google Scholar 

  31. Kamisetty, H., et al.: Proteins 79(2), 444–462 (2011)

    Article  Google Scholar 

  32. Kingsford, C.L., et al.: Bioinformatics 21(7), 1028–1039 (2005)

    Article  Google Scholar 

  33. Koehl, P., Delarue, M.: Journal of Molecular Biology 239(2), 249–275 (1994)

    Article  Google Scholar 

  34. Koehl, P., Levitt, M.: Journal of Molecular Biology 293(5), 1161–1181 (1999)

    Article  Google Scholar 

  35. Kuhlman, B., Baker, D.: Proc. Natl. Acad. Sci. USA 97(19), 10383–10388 (2000)

    Article  Google Scholar 

  36. Lasters, I., et al.: Protein Eng. 8(8), 815–822 (1995)

    Article  Google Scholar 

  37. Lazaridis, T., Karplus, M.: Proteins 35(2), 133–152 (1999)

    Article  Google Scholar 

  38. Leach, A.R., Lemon, A.P.: Proteins 33(2), 227–239 (1998)

    Article  Google Scholar 

  39. Leaver-Fay, A., et al.: Pacific Symposium on Biocomputing 10, 16–27 (2005)

    Google Scholar 

  40. Lee, C., Subbiah, S.: Journal of Molecular Biology 217(2), 373–388 (1991)

    Article  Google Scholar 

  41. Lovell, S.C., et al.: Proteins 40(3), 389–408 (2000)

    Article  Google Scholar 

  42. Nourry, C., et al.: Sci. STKE 2003(179), re7 (2003)

    Google Scholar 

  43. Pierce, N.A., et al.: Journal of Computational Chemistry 21(11), 999–1009 (2000)

    Article  Google Scholar 

  44. Pierce, N.A., Winfree, E.: Protein Eng. 15(10), 779–782 (2002)

    Article  Google Scholar 

  45. Piserchio, A., et al.: Biochemistry 44(49), 16158–16166 (2005)

    Article  Google Scholar 

  46. Ponder, J.W., Richards, F.M.: Journal of Molecular Biology 193(4), 775–791 (1987)

    Article  Google Scholar 

  47. Reina, J., et al.: Nat. Struct. Mol. Biol. 9(8), 621–627 (2002)

    Google Scholar 

  48. Reynolds, K.A., et al.: Journal of Molecular Biology 382(5), 1265–1275 (2008)

    Article  MathSciNet  Google Scholar 

  49. Roberts, K.E., Cushing, P.R., Boisguerin, P., Madden, D.R., Donald, B.R.: Supplementary material: Design of protein-protein interactions with a novel ensemble-based scoring algorithm (2011), available online http://www.cs.duke.edu/donaldlab/Supplementary/recomb11/kstar-ppi

  50. Thomas, J., et al.: Proteins 76(4), 911–929 (2009)

    Article  Google Scholar 

  51. Weiner, S.J., et al.: Journal of Computational Chemistry 7(2), 230–252 (1986)

    Article  Google Scholar 

  52. Wells, J.A., McClendon, C.L.: Nature 450(7172), 1001–1009 (2007)

    Article  Google Scholar 

  53. Wolde, M., et al.: Journal of Biological Chemistry 282(11), 8099–8109 (2007)

    Article  Google Scholar 

  54. Word, J.M., et al.: Journal of Molecular Biology 285(4), 1711–1733 (1999)

    Article  Google Scholar 

  55. Yanover, C., Weiss, Y.: Advances in Neural Information Processing Systems, pp. 84–86 (2002)

    Google Scholar 

  56. Zhang, J., Liu, J.S.: PLoS Comput. Biol. 2(12), e168 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roberts, K.E., Cushing, P.R., Boisguerin, P., Madden, D.R., Donald, B.R. (2011). Design of Protein-Protein Interactions with a Novel Ensemble-Based Scoring Algorithm. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20036-6_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20035-9

  • Online ISBN: 978-3-642-20036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics