Skip to main content

Blocked Pattern Matching Problem and Its Applications in Proteomics

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6577))

Abstract

Matching a mass spectrum against a text (a key computational task in proteomics) is slow since the existing text indexing algorithms (with search time independent of the text size) are not applicable in the domain of mass spectrometry. As a result, many important applications (e.g., searches for mutated peptides) are prohibitively time-consuming and even the standard search for non-mutated peptides is becoming too slow with recent advances in high-throughput genomics and proteomics technologies. We introduce a new paradigm – the Blocked Pattern Matching (BPM) Problem - that models peptide identification. BPM corresponds to matching a pattern against a text (over the alphabet of integers) under the assumption that each symbol a in the pattern can match a block of consecutive symbols in the text with total sum a.

BPM opens a new, still unexplored, direction in combinatorial pattern matching and leads to the Mutated BPM (modeling identification of mutated peptides) and Fused BPM (modeling identification of fused peptides in tumor genomes). We illustrate how BPM algorithms solve problems that are beyond the reach of existing proteomics tools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abascal, F., Posada, D., Knight, R.D., Zardoya, R.: Parallel evolution of the genetic code in arthropod mitochondrial genomes. PLoS Biol. 4(5), e127 (2006)

    Article  Google Scholar 

  2. Amir, A.: Asynchronous pattern matching. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 1–10. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Amir, A., Aumann, Y., Indyk, P., Levy, A., Porat, E.: Efficient computations of ℓ1 and ℓ ∞  rearrangement distances. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 39–49. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porat, E., Skiena, S., Vishne, U.: Pattern matching with address errors: rearrangement distances. In: Proc. 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1221–1229 (2006)

    Google Scholar 

  5. Amir, A., Aumann, Y., Kapah, O., Levy, A., Porat, E.: Approximate string matching with address bit errors. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 118–129. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Amir, A., Eisenberg, E., Keller, O., Levy, A., Porat, E.: Approximate string matching with stuck address bits. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 395–405. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Amir, A., Hartman, T., Kapah, O., Levy, A., Porat, E.: On the cost of interchange rearrangement in strings. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 99–110. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Amir, A., Kapah, O., Porat, E.: Deterministic length reduction: Fast convolution in sparse data and applications. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 183–194. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Baeza-Yates, R.: A fast set intersection algorithm for sorted sequences. In: Sahinalp, S., Muthukrishnan, S., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 400–408. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Besemer, J., Lomsadze, A., Borodovsky, M.: Genemarks: a self-training method for prediction of gene starts in microbial genomes implications for finding sequence motifs in regulatory regions. Nucleic Acids Research 29(12), 2607–2618 (2001)

    Article  Google Scholar 

  11. Cardoze, D.E., Schulman, L.J.: Pattern matching for spatial point sets. In: Proc. 39th Annu. IEEE Sympos. Found. Comput. Sci., pp. 156–165 (1998)

    Google Scholar 

  12. Castellana, N.E., Payne, S.H., Shen, Z., Stanke, M., Bafna, V., Briggs, S.P.: Discovery and revision of arabidopsis genes by proteogenomics. Proceedings of the National Academy of Sciences 105(52), 21034–21038 (2008)

    Article  Google Scholar 

  13. Cohen, H., Porat, E.: Fast set intersection and two-patterns matching. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 234–242. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Cole, R., Hariharan, R.: Approximate string matching: A simpler faster algorithm. SIAM J. Comput. 31(6), 1761–1782 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press and McGraw-Hill (1992)

    Google Scholar 

  16. Demaine, E.D., López-Ortiz, A., Munro, I.J.: Adaptive set intersections, unions and differences. In: Proc. 11th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 743–752 (2000)

    Google Scholar 

  17. Dietz, P., Mehlhorn, K., Raman, R., Uhrig, C.: Lower bounds for set intersection queries. Algorithmica 14(2), 154–168 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Elenitoba-Johnson, K.S.J., Crockett, D.K., Schumacher, J.A., Jenson, S.D., Coffin, C.M., Rockwood, A.L., Lim, M.S.: Proteomic identification of oncogenic chromosomal translocation partners encoding chimeric anaplastic lymphoma kinase fusion proteins. Proceedings of the National Academy of Sciences 103(19), 7402–7407 (2006)

    Article  Google Scholar 

  19. Eng, J., McCormack, A., Yates, J.: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry 5(11), 976–989 (1994)

    Article  Google Scholar 

  20. Frank, A.M., Pevzner, P.A.: PepNovo: De Novo Peptide Sequencing via Probabilistic Network Modeling. Anal. Chem. 77, 964–973 (2005)

    Article  Google Scholar 

  21. Guigó, R., Gusfield, D., Edwards, N., Lippert, R.: Generating peptide candidates from amino-acid sequence databases for protein identification via mass spectrometry. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 68–81. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Gupta, N., Tanner, S., Jaitly, N., Adkins, J., Lipton, M., Edwards, R., Romine, M., Osterman, A., Bafna, V., Smith, R., Pevzner, P.: Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation. Genome Res. 17, 1362–1377 (2007)

    Article  Google Scholar 

  23. Gupta, N., Pevzner, P.A.: False discovery rates of protein identifications: A strike against the two-peptide rule. Journal of Proteome Research 8(9), 4173–4181 (2009)

    Article  Google Scholar 

  24. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, New York (1997)

    Book  MATH  Google Scholar 

  25. Jaffe, J.D., Stange-Thomann, N., Smith, C., DeCaprio, D., Fisher, S., Butler, J., Calvo, S., Elkins, T., FitzGerald, M.G., Hafez, N., Kodira, C.D., Major, J., Wang, S., Wilkinson, J., Nicol, R., Nusbaum, C., Birren, B., Berg, H.C., Church, G.M.: The complete genome and proteome of mycoplasma mobile. Genome Research 14(8), 1447–1461 (2004)

    Article  Google Scholar 

  26. Jeong, K., Bandeira, N., Kim, S., Pevzner, P.A.: Gapped spectral dictionaries and their applications for database searches of tandem mass spectra. Mol. Cell. Proteomics (2010) (in press)

    Google Scholar 

  27. Kapah, O., Landau, G.M., Levy, A., Oz, N.: Interchange rearrangement: The element-cost model. Theoretical Computer Science 410(43), 4315–4326 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kim, S., Bandeira, N., Pevzner, P.A.: Spectral profiles: A novel representation of tandem mass spectra and its applications for de novo peptide sequencing and identification. Mol. Cell. Proteomics 8, 1391–1400 (2009)

    Article  Google Scholar 

  29. Kim, S., Gupta, N., Bandeira, N., Pevzner, P.A.: Spectral dictionaries: Integrating de novo peptide sequencing with database search of tandem mass spectra. Mol. Cell. Proteomics 8(1), 53–69 (2009)

    Article  Google Scholar 

  30. Kim, S., Gupta, N., Pevzner, P.A.: Spectral probabilities and generating functions of tandem mass spectra: A strike against decoy databases. Journal of Proteome Research 7(8), 3354–3363 (2008)

    Article  Google Scholar 

  31. Knight, R.D., Freeland, S.J., Landweber, L.F.: Rewiring the keyboard: evolvability of the genetic code. Nat. Rev. Genet. 2(1), 49–58 (2001)

    Article  Google Scholar 

  32. Merrihew, G.E., Davis, C., Ewing, B., Williams, G., Käll, L., Frewen, B.E., Noble, W.S., Green, P., Thomas, J.H., MacCoss, M.J.: Use of shotgun proteomics for the identification, confirmation, and correction of c. elegans gene annotations. Genome Research 18(10), 1660–1669 (2008)

    Article  Google Scholar 

  33. Muthukrishnan, S.: New results and open problems related to non-standard stringology. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 298–317. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  34. Ng, J., Pevzner, P.A.: Algorithm for identification of fusion proteins via mass spectrometry. Journal of Proteome Research 7(1), 89–95 (2008)

    Article  Google Scholar 

  35. Nielsen, P., Krogh, A.: Large-scale prokaryotic gene prediction and comparison to genome annotation. Bioinformatics 21(24), 4322–4329 (2005)

    Article  Google Scholar 

  36. Park, C.Y., Klammer, A.A., Käll, L., MacCoss, M.J., Noble, W.S.: Rapid and accurate peptide identification from tandem mass spectra. Journal of Proteome Research 7(7), 3022–3027 (2008)

    Article  Google Scholar 

  37. Shilov, I.V., Seymour, S.L., Patel, A.A., Loboda, A., Tang, W.H., Keating, S.P., Hunter, C.L., Nuwaysir, L.M., Schaeffer, D.A.: The paragon algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Molecular & Cellular Proteomics 6(9), 1638–1655 (2007)

    Article  Google Scholar 

  38. Tanner, S., Shu, H., Frank, A., Wang, L.C., Zandi, E., Mumby, M., Pevzner, P.A., Bafna, V.: Inspect: Identification of posttranslationally modified peptides from tandem mass spectra. Analytical Chemistry 77(14), 4626–4639 (2005)

    Article  Google Scholar 

  39. Tsur, D., Tanner, S., Zandi, E., Bafna, V., Pevzner, P.: Identification of post-translational modifications by blind search of mass spectra. Nature Biotechnology 23(12), 1562–1567 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ng, J., Amir, A., Pevzner, P.A. (2011). Blocked Pattern Matching Problem and Its Applications in Proteomics. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20036-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20035-9

  • Online ISBN: 978-3-642-20036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics