Skip to main content

Inferring Mechanisms of Compensation from E-MAP and SGA Data Using Local Search Algorithms for Max Cut

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6577))

  • 1258 Accesses

Abstract

A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, C., Kamakaka, R.: Chromatin assembly: biochemical identities and genetic redundancy. Current Opinion in Genetics and Development 9, 185–190 (1999)

    Article  Google Scholar 

  2. Bandyopadhyay, S., Kelley, R., Krogan, N.: Functional maps of protein complexes from quantitative genetic interaction data. PLoS Computational Biology (January 2008)

    Google Scholar 

  3. Berriz, G.F., King, O.D., Bryant, B., Sander, C., Roth, F.P.: Characterizing gene sets with FuncAssociate. Bioinformatics 19(18), 2502–2504 (2003)

    Article  Google Scholar 

  4. Boone, C., Bussey, H., Andrews, B.J.: Exploring genetic interactions and networks with yeast. Nature Reviews Genetics 8, 437–449 (2007)

    Article  Google Scholar 

  5. Brady, A., Maxwell, K., Daniels, N., Cowen, L.: Fault tolerance in protein interaction networks: Stable bipartite subgraphs and redundant pathways. PLoS ONE 4(4), e5364 (2009)

    Article  Google Scholar 

  6. Callebaut, I., Mornon, J.-P.: From BRCA1 to RAP1: A widespread BRCT module closely associated with DNA repair. FEBS Letters 400, 25–30 (1997)

    Article  Google Scholar 

  7. Carr, A.: DNA structure dependent checkpoints as regulators of DNA repair. DNA Repair 1, 983–994 (2002)

    Article  Google Scholar 

  8. Collins, S., Miller, K., Maas, N., Roguev, A.: Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature (January 2007)

    Google Scholar 

  9. Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E.D., Sevier, C.S., Ding, H., Koh, J.L.Y., Toufighi, K., Mostafavi, S., Prinz, J., Onge, R.P.S., VanderSluis, B., Makhnevych, T., Vizeacoumar, F.J., Alizadeh, S., Bahr, S., Brost, R.L., Chen, Y., Cokol, M., Deshpande, R., Li, Z., Lin, Z., Liang, W., Marback, M., Paw, J., Luis, B.S., Shuteriqi, E., Tong, A.H.Y., van Dyk, N., Wallace, I.M., Whitney, J.A., Weirauch, M.T., Zhong, G., Zhu, H., Houry, W.A., Brudno, M., Ragibizadeh, S., Papp, B., Pál, C., Roth, F.P., Giaever, G., Nislow, C., Troyanskaya, O.G., Bussey, H., Bader, G.D., Gingras, A., Morris, Q.D., Kim, P.M., Kaiser, C.A., Myers, C.L., Andrews, B.J., Boone, C.: The genetic landscape of a cell. Science 327(5964), 425–431 (2010)

    Article  Google Scholar 

  10. D’Amours, D., Jackson, S.: The MRE11 complex: at the crossroads of DNA repair and checkpoint signalling. Nature Reviews Molecular Cell Biology 3, 317–327 (2002)

    Article  Google Scholar 

  11. Fiedler, D., Braberg, H., Mehta, M., Chechik, G., Cagney, G.: Functional organization of the S. cerevisiae phosphorylation network. Cell (January 2009)

    Google Scholar 

  12. Green, E., Antcsak, A., Bailey, A., Franco, A., Wu, K., Yates, J., Kaufman, P.: Replication-independent histone deposition by the HIR complex and asf1. Current Biology 15, 2044–2049 (2005)

    Article  Google Scholar 

  13. Hescott, B.J., Leiserson, M.D.M., Slonim, D.K., Cowen, L.J.: Evaluating between-pathway models with expression data. Journal of Computational Biology 17(3), 477–487 (2010)

    Article  Google Scholar 

  14. Jaccard, P.: Nouvelles recherches sur la distribution florale. Bull. Soc. Vaudoise Sci. Nat. 44, 223–270 (1908)

    Google Scholar 

  15. Jaimovich, A., Rinott, R., Schuldiner, M., Margalit, H., Friedman, N.: Modularity and directionality in genetic interaction maps. Bioinformatics 26(12), i228–i236 (2010)

    Article  Google Scholar 

  16. Kelley, D., Kingsford, C.: Extracting between-pathway models from E-MAP interactions using expected graph compression. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 248–262. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Kelley, R., Ideker, T.: Systematic interpretation of genetic interactions using protein networks. Nature Biotechnology 23(5), 561–566 (2005), doi:10.1038/nbt1096 PMID:15877074

    Article  Google Scholar 

  18. Krogan, N., Keogh, M.-C., Datta, N., Sawa, C., Ryan, O., Ding, H., Haw, R., Pootoolal, J., Tong, A., Canadien, V., Richards, D., Wu, X., Emili, A., Hughes, T., Buratowski, S., Greenblatt, J.: A Snf2 family ATPase complex required for the recruitment of the histone H2A variant Htz1. Molecular Cell 12, 1565–1576 (2003)

    Article  Google Scholar 

  19. Loebl, M.: Efficient maximal cubic graph cuts. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 351–362. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  20. Ma, X., Tarone, A., Li, W.: Mapping genetically compensatory pathways from synthetic lethal interactions in yeast. PLoS One 3(4), e1922 (2008), doi:10.1371/journal.pone.0001922 PMCID: PMC2275788

    Article  Google Scholar 

  21. Pan, X., Ye, P., Tuan, D., Wang, X., Bader, J., Boeke, J.: A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124, 1069–1081 (2006)

    Article  Google Scholar 

  22. Poljak, S.: Integer linear programs and local search for max-cut. SIAM J. Comput. 24(4), 822–839 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Real, R., Vargas, J.: The probabilistic basis of Jaccard’s index of similarity. Syst. Biol. 45(3), 380–385 (1996)

    Article  Google Scholar 

  24. Roguev, A., Bandyopadhyay, S., Zofall, M., Zhang, K., Fischer, T., Collins, S.R., Qu, H., Shales, M., Park, H., Hayles, J., Hoe, K., Kim, D., Ideker, T., Grewal, S.I., Weissman, J.S., Krogan, N.J.: Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322(5900), 405–410 (2008)

    Article  Google Scholar 

  25. Schäffer, A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20, 56–87 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schuldiner, M., Collins, S.R., Thompson, N.J., Denic, V., Bhamidipati, A., Punna, T., Ihmels, J., Andrews, B., Boone, C., Greenblatt, J.F., Weissman, J.S., Krogan, N.J.: Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123(3), 507–519 (2005)

    Article  Google Scholar 

  27. Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Research 34(suppl 1), D535–D539 (2005)

    Google Scholar 

  28. Taipale, M., Jarosz, D., Lindquist, S.: HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nature Reviews Molecular Cell Biology 11, 515–528 (2010)

    Article  Google Scholar 

  29. Tong, A.H.Y., Lesage, G., Bader, G.D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G.F., Brost, R.L., Chang, M., Chen, Y., Cheng, X., Chua, G., Friesen, H., Goldberg, D.S., Haynes, J., Humphries, C., He, G., Hussein, S., Ke, L., Krogan, N., Li, Z., Levinson, J.N., Lu, H., Menard, P., Munyana, C., Parsons, A.B., Ryan, O., Tonikian, R., Roberts, T., Sdicu, A.-M., Shapiro, J., Sheikh, B., Suter, B., Wong, S.L., Zhang, L.V., Zhu, H., Burd, C.G., Munro, S., Sander, C., Rine, J., Greenblatt, J., Peter, M., Bretscher, A., Bell, G., Roth, F.P., Brown, G.W., Andrews, B., Bussey, H., Boone, C.: Global mapping of the yeast genetic interaction network. Science 303(5659), 808–813 (2004)

    Article  Google Scholar 

  30. Ulitsky, I., Krogan, N., Shamir, R.: Towards accurate imputation of quantitative genetic interactions. Genome Biology (January 2009)

    Google Scholar 

  31. Ulitsky, I., Shamir, R.: Pathway redundancy and protein essentiality revealed in the S. cerevisiae interaction networks. Molecular Systems Biology 3(104) (2007), PMCID: PMC1865586

    Google Scholar 

  32. Ulitsky, I., Shlomi, T., Kupiec, M., Shamir, R.: From E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions. Molecular Systems Biology (January 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leiserson, M.D.M., Tatar, D., Cowen, L.J., Hescott, B.J. (2011). Inferring Mechanisms of Compensation from E-MAP and SGA Data Using Local Search Algorithms for Max Cut. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20036-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20035-9

  • Online ISBN: 978-3-642-20036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics