Skip to main content

Selected Topics in Computational Complexity of Membrane Systems

  • Chapter
Computation, Cooperation, and Life

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6610))

  • 341 Accesses

Abstract

Membrane system (P system) is a bio-inspired computational model using a variety of abstracted bio-operations, from regulated transport of molecules through membranes to membrane division, membrane dissolution, information processing through neural spiking signals etc. We compare various combinations of these operations to study how they influence the computational potential of the system. We give a comparative overview of recent known results for P systems with active membranes, P systems with proteins on membranes and spiking neural P systems. Trade-off between various operations and the role of diversity, regulation and structure in the system is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alhazov, A., Martín-Vide, C., Pan, L.: Solving a PSPACE-complete problem by P systems with restricted active membranes. Fundamenta Informaticae 58(2), 67 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Alhazov, A., Pérez-Jiménez, M.J.: Uniform solution of QSAT using polarizationless active membranes. In: Durand-Lose, J., Margenstern, M. (eds.) [6], pp. 122–133.

    Google Scholar 

  3. Andrei, S., Cavadini, S.V., Chin, W.-N.: A new algorithm for regularizing one-letter context-free grammars. Theoretical Computer Science 306, 113–122 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Antoniou, I., Calude, C., Dinneen, M.J. (eds.): Proceedings of the Second International Conference on Unconventional Models of Computation, UMC’2K. Springer, Heidelberg (2001)

    Google Scholar 

  5. Calude, C.S., Costa, J.F., Freund, R., Oswald, M., Rozenberg, G. (eds.): UC 2008. LNCS, vol. 5204. Springer, Heidelberg (2008)

    Google Scholar 

  6. Durand-Lose, J.O., Margenstern, M. (eds.): MCU 2007. LNCS, vol. 4664. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  7. Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.): WMC 2007. LNCS, vol. 4860, pp. 77–96. Springer, Heidelberg (2007)

    Book  Google Scholar 

  8. García-Arnau, M., Pérez, D., Rodríguez-Patón, A., Sosík, P.: Spiking neural P systems: Stronger normal forms. Intern. J. of Unconventional Computing 5(5), 411–425 (2009)

    Google Scholar 

  9. Gutiérrez-Naranjo, M.A., Păun, G., Romero-Jiménez, A., Riscos-Núnez, A. (eds.): Fifth Brainstorming Week on Membrane Computing. Fenix Editora, Sevilla (2007)

    Google Scholar 

  10. Ibarra, O.H., Păun, A., Păun, G., Rodríguez-Patón, A., Sosík, P., Woodworth, S.: Normal forms for spiking neural P systems. Theoretical Computer Science 372(2-3), 196–217 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71(2–3), 279–308 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Ishdorj, T.-O., Leporati, A., Pan, L., Zeng, X., Zhang, X.: Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. In: Martínez-del-Amor, et al. (eds.) [16], vol. 2, pp. 1–27

    Google Scholar 

  13. Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez, M.J., Zandron, C.: Complexity aspects of polarizationless membrane systems. Natural Computing 8(4), 703–717 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: On the computational power of spiking neural P systems. In: Gutiérrez-Naranjo, et al. (eds.) [9], pp. 227–245

    Google Scholar 

  15. Maass, W., Bishop, C. (eds.): Pulsed Neural Networks. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  16. Martínez-del-Amor, M.A., Orejuela-Pinedo, E.F., Păun, G., Hurtado de Mendoza, I.P., Riscos-Núnez, A. (eds.): Seventh Brainstorming Week on Membrane Computing. Fenix Editora, Sevilla (2009)

    Google Scholar 

  17. Martínez-del-Amor, M.A., Păun, G., Hurtado de Mendoza, I.P., Riscos-Núnez, A. (eds.): Eigth Brainstorming Week on Membrane Computing. Fenix Editora, Sevilla (2010)

    Google Scholar 

  18. Murphy, N.: Uniformity Conditions for Membrane Systems: Uncovering Complexity Below P. National University of Ireland, Maynooth, PhD thesis (2010)

    Google Scholar 

  19. Murphy, N., Woods, D.: Active membrane systems without charges and using only symmetric elementary division characterise P. In: Eleftherakis, et al. (eds.) [7], pp. 367–384

    Google Scholar 

  20. Neary, T.: On the computational complexity of spiking neural P systems. In: Calude, et al. (eds.) [5], pp. 189–205

    Google Scholar 

  21. Pérez-Jiménez, M.J.: A computational complexity theory in membrane computing. In: Păun et al. (eds.) [24], pp. 125–148

    Google Scholar 

  22. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Natural Computing 2, 265–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Păun, A., Popa, B.: P systems with proteins on membranes. Fundamenta Informaticae 72(4), 467–483 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Păun, G., Pérez-Jiménez, M.J., Riscos-Núnez, A., Rozenberg, G., Salomaa, A. (eds.): WMC 2009. LNCS, vol. 5957. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  25. Păun, G.: P systems with active membranes: attacking NP-complete problems. J. Automata, Languages and Combinatorics 6(1), 75–90 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Rodríguez-Patón, A.: Sosík, P., Cienciala, L.: On complexity classes of spiking neural P systems. In: Martínez-del-Amor, et al. (eds.) [17], pp. 267–282

    Google Scholar 

  27. Rodríguez-Patón, A., Sosík, P., Ciencialová, L.: Polynomial complexity classes in spiking neural P systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 348–360. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Sosík, P., Păun, A., Rodríguez-Patón, A., Pérez, D.: On the power of computing with proteins on membranes. In: Păun, et al. (eds.) [24], pp. 448–460

    Google Scholar 

  29. Sosík, P., Rodríguez-Patón, A.: Membrane computing and complexity theory: A characterization of PSPACE. J. Comput. System Sci. 73(1), 137–152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Valsecchi, A., Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: An efficient simulation of polynomial-space turing machines by P systems with active membranes. In: Păun, et al. (eds.) [24], pp. 461–478

    Google Scholar 

  31. van Leeuwen, J. (ed.): Handbook of Theoretical Computer Science. Algorithms and Complexity, vol. A. Elsevier, Amsterdam (1990)

    MATH  Google Scholar 

  32. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes. In: Antoniou, et al. (eds.) [4], pp. 289–301

    Google Scholar 

  33. Zandron, C., Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez, M.J.: On the computational efficiency of polarizationless recognizer P systems with strong division and dissolution. Fundam. Inform. 87(1), 79–91 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sosík, P. (2011). Selected Topics in Computational Complexity of Membrane Systems. In: Kelemen, J., Kelemenová, A. (eds) Computation, Cooperation, and Life. Lecture Notes in Computer Science, vol 6610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20000-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20000-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19999-8

  • Online ISBN: 978-3-642-20000-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics