Skip to main content

8 Fruiting Body Evolution in the Ascomycota: a Molecular Perspective Integrating Lichenized and Non-Lichenized Groups

  • Chapter
  • First Online:
Book cover Evolution of Fungi and Fungal-Like Organisms

Part of the book series: The Mycota ((MYCOTA,volume 14))

Abstract

Fruiting body traits are among the most widely used characters in fungal classification. Due to the paucity and homoplasy of ascomatal features, however, ascomycete classification has been notoriously instable over the past 100 years. With the growing pool of molecular data and advancing bioinformatics tools we now begin to unravel some of the higher-level relationships in the Ascomycota and the evolution of their ascomatal characters. This review highlights the phylogenetic distribution of ascomatal traits (ascoma type, ascoma development, ascus structure) across the currently accepted classes in the Ascomycota. It shows that fruiting body evolution follows a complex pattern, which we are only beginning to understand. Further, it examines repeated themes of morphological evolution, the significance of ontogenetic characters, and the employment of ancestral character state reconstruction to assess fruiting body evolution. A particular focus is the intertwined evolutionary history of lichenized and non-lichenized species in the Ascomycota. While traditional studies often treated mutualistic fungi separately, this review emphasizes that we can only reach a comprehensive understanding of ascomatal evolution in the ascomycetes, if we integrate lichenized and non-lichenized fungi in molecular phylogenetics as well as in morphological and ontogenetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baral HO (1992) Vital versus herbarium taxonomy: morphological differences between living and dead cells of ascomycetes, and their taxonomic implications. Mycotaxon 44:333–390

    Google Scholar 

  • Bellemère A (1967) Contributions à l'étude du développement de l'ápothécie chez les Discomycètes inoperculés. Bull Soc Mycol France 83:393–640, 753–931

    Google Scholar 

  • Bellemère A (1977) Apical apparatus of some Discomycetes-asci – ultrastructural study. Rev Mycol 41:233–264

    Google Scholar 

  • Bellemère A, Letrouit-Galinou MA (1987) Differentiation of lichen asci including dehiscence and sporogenesis: an ultrastructural survey. Bibl Lichenol 25:137–161

    Google Scholar 

  • Berbee ML (1996) Loculoascomycete origins and evolution of filamentous ascomycete morphology based on 18S rRNA gene sequence data. Mol Biol Evol 13:462–470

    Article  PubMed  CAS  Google Scholar 

  • Berbee ML, Carmean DA, Winka K (2000) Ribosomal DNA and resolution of branching order among the ascomycota: How many nucleotides are enough? Mol Phylogenet Evol 17:337–344

    Article  PubMed  CAS  Google Scholar 

  • Berbee ML, Taylor JW (1992a) Convergence in ascospore discharge mechanism among pyrenomycete fungi based on 18S ribosomal RNA gene sequence. Mol Phylogenet Evol 1:59–71

    Article  PubMed  CAS  Google Scholar 

  • Berbee ML, Taylor JW (1992b) Detecting morphological convergence in true fungi, using-18s Ribosomal-Rna Gene Sequence Data. Biosystems 28:117–125

    Article  PubMed  CAS  Google Scholar 

  • Berbee ML, Taylor JW (1992c) Two ascomycete classes based on fruiting-body characters and ribosomal DNA-sequence. Mol Biol Evol 9:278–284

    PubMed  CAS  Google Scholar 

  • Berbee ML, Taylor JW (1995) From 18S ribosomal sequence data to evolution of morphology among the Fungi. Can J Bot 73:S677–S683

    Article  CAS  Google Scholar 

  • Binder M, Hibbett DS (2006) Molecular systematics and biological diversification of Boletales. Mycologia 98:971–981

    Article  PubMed  Google Scholar 

  • Bistis GN, Perkins DD, Read ND (2003) Different cell types in Neurospora crassa. Fungal Genet Biol 50:17–19

    Google Scholar 

  • Blackwell M (1994) Minute mycological mysteries – the influence of arthropods on the lives of fungi. Mycologia 86:1–17

    Article  Google Scholar 

  • Bruns TD, Fogel R, White TJ, Palmer JD (1989) Accelerated evolution of a false-truffle from a mushroom ancestor. Nature 339:140–142

    Article  PubMed  CAS  Google Scholar 

  • Busch S, Braus GH (2007) How to build a fungal fruit body: from uniform cells to specialized tissue. Mol Microbiol 64:873–876

    Article  PubMed  CAS  Google Scholar 

  • Buschbom J, Mueller G (2004) Resolving evolutionary relationships in the lichen-forming genus Porpidia and related allies (Porpidiaceae, Ascomycota). Mol Phylogenet Evol 32:66–82

    Article  PubMed  Google Scholar 

  • Cain RF (1972) Evolution of the fungi. Mycologia 64:1–14

    Article  Google Scholar 

  • Chadefaud M (1973) Les asques et la systématique des Ascomycètes. Bull Soc Mycol Fr 89:127–170

    Google Scholar 

  • Chadefaud M, Letrouit-Galinou MA, Favre MC (1963) Sur l'évolution des asques du type archaeasce chez les Discomycètes de l'ordre des Lecanorales. CR Acad Sci 257:4003–4005

    Google Scholar 

  • Chadefaud M, Letrouit-Galinou MA, Janex-Favre MC (1968) Sur l'origine phylogenetique et l'évolution des Ascomycètes des lichens. Bull Soc Bot France 115:79–111

    Google Scholar 

  • Cunningham CW, Omland KE, Oakley TH (1998) Reconstructing ancestral character states: a critical reappraisal. Trends Ecol Evol 13:361–366

    Article  PubMed  CAS  Google Scholar 

  • del Prado R, Schmitt I, Kautz S, Palice Z, Lücking R, Lumbsch HT (2006) Molecular data place Trypetheliaceae in Dothideomycetes. Mycol Res 110:511–520

    Article  PubMed  CAS  Google Scholar 

  • Doppelbaur AW (1960) Studien zur Anatomie und Entwicklungsgeschichte einiger endolithischen pyrenocarpen Flechten. Planta 53:246–292

    Article  Google Scholar 

  • Döring H, Clerc P, Grube M, Wedin M (2000) Mycobiont-specific PCR primers for the amplification of nuclear ITS and LSU rDNA from lichenized ascomycetes. Lichenologist 32:200–204

    Article  Google Scholar 

  • Döring H, Henssen A, Wedin M (1999) Ascoma development in Neophyllis melacarpa (Lecanorales, Ascomycota), with notes on the systematic position of the genus. Austral J Bot 47:783–794

    Article  Google Scholar 

  • Döring H, Lumbsch HT (1998) Ascoma ontogeny: is this character set of any use in the systematics of lichenized ascomycetes? Lichenologist 30:489–500

    Google Scholar 

  • Döring H, Wedin M (2000) Homology assessment of the boundary tissue in fruiting bodies of the lichen family Sphaerophoraceae (Lecanorales, Ascomycota). Plant Biol 2:361–367

    Article  Google Scholar 

  • Ekman S, Andersen HL, Wedin M (2008) The limitations of ancestral state reconstruction and the evolution of the ascus in the Lecanorales (lichenized Ascomycota). Syst Biol 57:141–156

    Article  PubMed  CAS  Google Scholar 

  • Engh I, Nowrousian M, Kück U (2007a) Regulation of melanin biosynthesis via the dihydroxynaphthalene pathway is dependent on sexual development in the ascomycete Sordaria macrospora. FEMS Microbiol Lett 275:62–70

    Article  PubMed  CAS  Google Scholar 

  • Engh I, Wuertz C, Witzel-Schlomp K, Zhang HY, Hoff B, Nowrousian M, Rottensteiner H, Kuck U (2007b) The WW domain protein PRO40 is required for fungal fertility and associates with Woronin bodies. Eukaryot Cell 6:831–843

    Article  PubMed  CAS  Google Scholar 

  • Eriksson OE, Hawksworth DL (1993) Outline of the ascomycetes – 1993. Syst Ascomycetum 12:51–257

    Google Scholar 

  • Esser, K, Straub, J (1958) Genetische Untersuchungen an Sordaria macrospora Auersw., Kompensation und Induktion bei genbedingten Entwicklungsdefekten. Zeitschr Vererbungsl 89:729–746

    CAS  Google Scholar 

  • Fries EM (1821) Systema mycologicum. A series of volumes, published 1821–1832. Berlinge, Lund

    Google Scholar 

  • Gargas A, DePriest PT (1996) A nomenclature for fungal PCR primers with examples from intron-containing SSU rDNA. Mycologia 88:745–748

    Article  CAS  Google Scholar 

  • Gargas A, Taylor JW (1995) Phylogeny of discomycetes and early radiations of the apothecial Ascomycotina inferred from SSU rDNA sequence data. Exp Mycol 19:7–15

    Article  PubMed  CAS  Google Scholar 

  • Geiser DM, Gueidan C, Miadlikowska J, Lutzoni F, Kauff F, Hofstetter V, Fraker E, Schoch CL, Tibell L, Untereiner WA, Aptroot A (2006) Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia 98:1053–1064

    Article  PubMed  Google Scholar 

  • Greif MD, Gibas CFC, Tsuneda A, Currah RS (2007) Ascoma development and phylogeny of an apothecioid dothideomycete, Catinella olivacea. Am J Bot 94:1890–1899

    Article  PubMed  CAS  Google Scholar 

  • Greif MD, Tsuneda A, Currah RS (2004) The peridial development and dehiscence mechanism of Cryptendoxyla hypophloia, a cleistothecial ascomycete isolated from the bodies of arthropods. Int J Plant Sci 165:957–964

    Article  Google Scholar 

  • Grube M (1998) Classification and phylogeny in the Arthoniales (lichenized ascomycetes). Bryologist 101:377–391

    Google Scholar 

  • Grube M, Baloch E, Lumbsch HT (2004) The phylogeny of Porinaceae (Ostropomycetidae) suggests a neotenic origin of perithecia in Lecanoromycetes. Mycol Res 108:1111–1118

    Article  PubMed  CAS  Google Scholar 

  • Gueidan C, Roux C, Lutzoni F (2007) Using a multigene phylogenetic analysis to assess generic delineation and character evolution in Verrucariaceae (Verrucariales, Ascomycota). Mycol Res 111:1145–1168

    Article  PubMed  CAS  Google Scholar 

  • Hafellner J (1984) Studien in Richtung einer natürlicheren Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae. Beih Nova Hedwigia 79:241–371

    Google Scholar 

  • Hansen K, Læssøe T, Pfister DH (2001) Phylogenetics of the Pezizaceae, with an emphasis on Peziza. Mycologia 93:958–990

    Article  CAS  Google Scholar 

  • Hansen K, Perry BA, Pfister DH (2005) Phylogenetic origins of two cleistothecial fungi, Orbicula parietina and Lasiobolidium orbiculoides, within the operculate discomycetes. Mycologia 97:1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Hansen K, Pfister DH (2006) Systematics of the Pezizomycetes – the operculate discomycetes. Mycologia 98:1029–1040

    Article  PubMed  CAS  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity – magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Henssen A (1963) Eine Revision der Flechtenfamilien Lichinaceae und Ephebaceae. Symb Bot Ups 18:1–123

    Google Scholar 

  • Henssen A (1969a) Die Entstehung des Thallusrandes bei den Pannariaceen (Lichenes) mit einer generellen Diskussion uber die Entwicklung lecanoriner und biatoriner Flechtenapothecien. Ber Dtsch Bot Gesell 82:235–248

    Google Scholar 

  • Henssen A (1969b) Eine Studie über die Gattung Arctomia. Svensk Bot Tideskr 63:126–138

    Google Scholar 

  • Henssen A (1970) Die Apothecienentwicklung bei Umbilicaria Hoffm. emend Frey. Vortr Gesamtgeb Bot NF 4:103–126

    Google Scholar 

  • Henssen A (1976) Studies in the developmental morphology of lichenized Ascomycetes. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London, pp 107–138

    Google Scholar 

  • Henssen A (1994) Contributions to the morphology ans species delimitation in Heppia sensu stricto (lichenized Ascomycotina). Acta Bot Fenn 150:57–73

    Google Scholar 

  • Henssen A, Jahns HM (1974) Lichenes. Thieme, Stuttgart

    Google Scholar 

  • Henssen A, Keuck G, Renner B, Vobis G (1981) The lecanoralean centrum. In: Reynolds DR (ed) Ascomycete systematics: the Luttrellian concept. Springer, Berlin Heidelberg New York, pp 138–234

    Chapter  Google Scholar 

  • Henssen A, Lücking R (2002) Morphology, anatomy, and ontogeny in the Asterothyriaceae (Ascomycota: Ostropales), a misunderstood group of lichenized fungi. Ann Bot Fenn 39:273–299

    Google Scholar 

  • Henssen A, Thor G (1994) Developmental morphology of the ‘Zwischengruppe’ between Ascohymeniales and Ascoloculares. In: Hawksworth D (ed) Ascomycete systematics problems and perspectives in the nineties. NATO Advanced Science Institutes Series. Plenum, New York, pp 43–56

    Google Scholar 

  • Hibbett DS (2004) Trends in morphological evolution in homobasidiomycetes inferred using maximum likelihood: A comparison of binary and multistate approaches. Syst Biol 53:889–903

    Article  PubMed  Google Scholar 

  • Hibbett DS (2007) After the gold rush, or before the flood? Evolutionary morphology of mushroom-forming fungi (Agaricomycetes) in the early 21st century. Mycol Res 111:1001–1018

    Article  PubMed  Google Scholar 

  • Hibbett DS, Binder M (2002) Evolution of complex fruiting-body morphologies in homobasidiomycetes. Proc Roy Soc London Ser B 269:1963–1969

    Article  CAS  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch HT, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai Y-C, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Koljalg U, Kurtzman CP, Larsson K-H, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo J-M, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schuler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao Y-J, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Honegger R (1982) The ascus apex in lichenized fungi. 3. The Pertusaria-type. Lichenologist 14:205–217

    Article  Google Scholar 

  • Honegger R (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol 42:553–578

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Bollback JP (2001) Empirical and hierarchical Bayesian estimation of ancestral states. Syst Biol 50:351–366

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Rannala B, Masly JP (2000) Accommodating phylogenetic uncertainty in evolutionary studies. Science 288:2349–2350

    Article  PubMed  CAS  Google Scholar 

  • Ingold CT (1971) Fungal spores: their liberation and dispersal. Clarendon, Oxford

    Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O'Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schussler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lucking R, Budel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822

    Article  PubMed  CAS  Google Scholar 

  • Janex-Favre M (1970) Sur le développement et la structure des ascocarpes et la position systématique du mycobionte de Lichen pyrénocarpe Arthopyrenia conoidea (Fr.) Zahlbr. Rev Bryol Lichenol 37:163–182

    Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth and Bisby's dictionary of the fungi. CAB International, Egham

    Google Scholar 

  • Læssøe T, Hansen K (2007) Truffle trouble: what happened to the Tuberales? Mycol Res 111:1075–1099

    Article  PubMed  CAS  Google Scholar 

  • Landvik S (1996) Neolecta, a fruit-body-producing genus of the basal ascomycetes, as shown by SSU and LSU rDNA sequences. Mycol Res 100:199–202

    Article  CAS  Google Scholar 

  • Landvik S, Eriksson OE, Berbee ML (2001) Neolecta – a fungal dinosaur? Evidence from beta-tubulin amino acid sequences. Mycologia 93:1151–1163

    Article  CAS  Google Scholar 

  • Landvik S, Schumacher TK, Eriksson OE, Moss ST (2003) Morphology and ultrastructure of Neolecta species. Mycol Res 107:1021–1031

    Article  PubMed  Google Scholar 

  • Liu YJ, Hall BD (2004) Body plan evolution of ascomycetes, as inferred from an RNA polymerase II, phylogeny. Proc Natl Acad Sci USA 101:4507–4512

    Article  PubMed  CAS  Google Scholar 

  • Liu YJJ, Whelen S, Benjamin DH (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

    Article  PubMed  CAS  Google Scholar 

  • Lumbsch HT (1999) The ascoma development in Mycoporum elabens (Mycoporaceae, Dothideales). Plant Biol 1:321–326

    Article  Google Scholar 

  • Lumbsch HT (2000) Phylogeny of filamentous ascomycetes. Naturwissenschaften 87:335–342

    Article  PubMed  CAS  Google Scholar 

  • Lumbsch HT, del Prado R, Kantvilas G (2005a) Gregorella, a new genus to accommodate Moelleropsis humida and a molecular phylogeny of Arctomiaceae. Lichenologist 37:291–302

    Article  Google Scholar 

  • Lumbsch HT, Huhndorf SM (2007) Whatever happened to the pyrenomycetes and loculoascomycetes? Mycol Res 111:1064–1074

    Article  PubMed  Google Scholar 

  • Lumbsch HT, Lindemuth R, Schmitt I (2000) Evolution of filamentous ascomycetes inferred from LSU rDNA sequence data. Plant Biol 2:525–529

    Article  CAS  Google Scholar 

  • Lumbsch HT, Mangold A, Lücking R, García MA, Martín MP (2004) Phylogenetic position of the genera Nadvornikia and Pyrgillus (Ascomycota) based on molecular data. Symb Bot Ups 34:9–17

    Google Scholar 

  • Lumbsch HT, Schmitt I, Barker D, Pagel M (2006) Evolution of micromorphological and chemical characters in the lichen-forming fungal family Pertusariaceae. Biol J Linn Soc 89:615–626

    Article  Google Scholar 

  • Lumbsch HT, Schmitt I, Döring H, Wedin M (2001a) ITS sequence data suggest variability of ascus types and support ontogenetic characters as phylogenetic discriminators in the Agyriales (Ascomycota). Mycol Res 105:265–274

    Article  CAS  Google Scholar 

  • Lumbsch HT, Schmitt I, Lindemuth R, Miller A, Mangold A, Fernandez F, Huhndorf S (2005b) Performance of four ribosomal DNA regions to infer higher-level phylogenetic relationships of inoperculate euascomycetes (Leotiomyceta). Mol Phylogenet Evol 34:512–524

    Article  PubMed  CAS  Google Scholar 

  • Lumbsch HT, Schmitt I, Mangold A, Wedin M (2007) Ascus types are phylogenetically misleading in Trapeliaceae and Agyriaceae (Ostropomycetidae, Ascomycota). Mycol Res 111:1133–1141

    Article  PubMed  CAS  Google Scholar 

  • Lumbsch HT, Schmitt I, Messuti MI (2001b) Utility of nuclear SSU and LSU rDNA data sets to discover the ordinal placement of the Coccotremataceae (Ascomycota). Org Divers Evol 1:99–112

    Article  Google Scholar 

  • Lumbsch HT, Wirtz N, Lindemuth R, Schmitt I (2002) Higher level phylogenetic relationships of euascomycetes (Pezizomycotina) inferred from a combined analysis of nuclear and mitochondrial sequence data. Mycol Prog 1:57–70

    Article  Google Scholar 

  • Luttrell ES (1951) Taxonomy of pyrenomycetes. Univ Miss Stud 24:1–120

    Google Scholar 

  • Luttrell ES (1955) The ascostromatic ascomycetes. Mycologia 47:511–532

    Article  Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung GH, Lücking R, Lumbsch HT, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim YW, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  PubMed  Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    Article  PubMed  CAS  Google Scholar 

  • Maddison DR, Maddison WP (2000) MacClade. Sinauer Associates, Sunderland

    Google Scholar 

  • Maddison WP (1995) Calculating the probability distributions of ancestral states reconstructed by parsimony on phylogenetic trees. Syst Bio 44:474–481

    Google Scholar 

  • Malloch D (1981) The plectomycete centrum. In: Reynolds DR (ed) Ascomycete systematics: the Luttrellian concept. Springer, Berlin Heidelberg New York, pp 73–91

    Chapter  Google Scholar 

  • Miadlikowska J, Lutzoni F (2004) Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. Am J Bot 91:449–464

    Article  PubMed  CAS  Google Scholar 

  • Muggia L, Hafellner J, Wirtz N, Hawksworth DL, Grube M (2008) The sterile microfilamentous lichenized fungi Cystocoleus ebeneus and Racodium rupestre are relatives of plant pathogens and clinically important dothidealean fungi. Mycol Res 112:50–56

    Article  PubMed  CAS  Google Scholar 

  • Nannfeldt JA (1932) Studien über die Morphologie und Systematik der nicht-lichenisierten inoperculaten Discomyceten. Nov Act Reg Soc Upsal 8:1–368

    Google Scholar 

  • Nolting N, Pöggeler S (2006) A MADS box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora. Eukayot Cell 5:1043–1056

    Article  CAS  Google Scholar 

  • Nowrousian M, Kück U (2006) Comparative gene expression analysis of fruiting body development in two filamentous fungi. FEMS Microbiol Lett 257:328–335

    Article  PubMed  CAS  Google Scholar 

  • Nowrousian M, Ringelberg C, Dunlap JC, Loros JL, Kück U (2005) Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora. Mol Gen Genom 273:137–149

    Article  CAS  Google Scholar 

  • O’Donnell K, Cigelnik E, Weber NS, Trappe JM (1997) Phylogenetic relationships among ascomycetous truffles and the true and false morels inferred from 18S and 28S ribosomal DNA sequence analysis. Mycologia 89:48–65

    Article  Google Scholar 

  • O’Donnell K, Ward TJ, Geiser DM, Kistler HC, Aokid T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fung Genet Biol 41:600–623

    Article  CAS  Google Scholar 

  • Pagel M (1997) Inferring evolutionary processes from phylogenies. Zool Scr 26:331–348

    Article  Google Scholar 

  • Pagel M (1999) The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst Bio 48:612–622

    Article  Google Scholar 

  • Pagel M, Meade A (2006) Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am Nat 167:808–825

    Article  PubMed  Google Scholar 

  • Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral character states on phylogenies. Syst Bio 53:673–684

    Article  Google Scholar 

  • Parguey-Leduc A, Janex-Favre MC (1981) The ascocarps of ascohymenial pyrenomycetes. In: Reynolds DR (ed) Ascomycete systematics: the Luttrellian concept. Springer, Berlin Heidelberg New York, pp 102–123

    Chapter  Google Scholar 

  • Perry BA, Hansen K, Pfister DH (2007) A phylogenetic overview of the family Pyronemataceae (Ascomycota, Pezizales). Mycol Res 111:549–571

    Article  PubMed  CAS  Google Scholar 

  • Pöggeler S, Nowrousian M, Kück U (2006) Fruiting-body development in ascomycetes. In: Kues U, Fischer R (eds) The Mycota. Springer, Berlin Heidelberg New York, pp 325–355

    Google Scholar 

  • Rambold G, Mayrhofer H, Matzer M (1994) On the ascus types in the Physciaceae (Lecanorales). Plant Syst Evol 192:31–40

    Article  Google Scholar 

  • Reeb V, Lutzoni F, Roux C (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol 32:1036–1060

    Article  PubMed  CAS  Google Scholar 

  • Rehner SA, Samuels GJ (1995) Molecular systematics of the Hypocreales – a teleomorph gene phylogeny and the status of their anamorphs. Can J Bot 73:S816–S823

    Article  CAS  Google Scholar 

  • Reynolds DR (1989) The bitunicate ascus paradigm. Bot Rev 55:1–52

    Article  Google Scholar 

  • Richardson DHS (1970) Ascus and ascocarp structure in lichens. Lichenologist 4:350–361

    Article  Google Scholar 

  • Richardson DHS, Morgan-Jones G (1964) Studies on lichen asci. I. The bitunicate type. Lichenologist 2:205–224

    Article  Google Scholar 

  • Roux C, Bellemère A, Boissiere JC, Esnault J, Janex-Favre MC, Letrouit-Galinou MA, Wagner J (1986) Les bases de la systematique moderne des lichens. Bull Soc Bot Fr 133:7–40

    Google Scholar 

  • Samuels GJ, Blackwell M (2001) Pyrenomycetes – fungi with perithecia. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota, vol 7A. Systematics and evolution. Springer, Berlin Heidelberg New York, pp 221–255

    Google Scholar 

  • Santesson R (1953) The new systematics of lichenized fungi. In: Osvald H, Aberg E (eds) Proceedings of the seventh botanical congress, Stockholm 1950. Almquist and Wiksell, Stockholm, pp 809–810

    Google Scholar 

  • Schluter DT, Price T, Mooers Ø, Ludwig D (1997) Likelihood of ancestor states in adaptive radiation. Evolution 51:1699–1711

    Article  Google Scholar 

  • Schmitt I, Mueller G, Lumbsch HT (2005) Ascoma morphology is homoplaseous and phylogenetically misleading in some pyrenocarpous lichens. Mycologia 97:362–374

    Article  PubMed  CAS  Google Scholar 

  • Schmitt I, del Prado R, Grube M, Lumbsch HT (2009) Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). Mol Phylogenet Evol 52:34–44

    Article  PubMed  CAS  Google Scholar 

  • Schultz M, Arendholz WR, Büdel B (2001) Origin and evolution of the lichenized ascomycete order Lichinales: monophyly and systematic relationships inferred from ascus, fruiting body and SSU rDNA evolution. Plant Biol 3:116–123

    Article  CAS  Google Scholar 

  • Schultz M, Büdel B (2002) Key to the genera of the Lichinaceae. Lichenologist 34:39–62

    Article  Google Scholar 

  • Schultz M, Büdel B (2003) On the systematic position of the lichen genus Heppia. Lichenologist 35:151–156

    Article  Google Scholar 

  • Schultz TR, Cocroft RB, Churchill GA (1996) The reconstruction of ancestral character states. Evolution 50:504–511

    Article  Google Scholar 

  • Spatafora JW (1995) Ascomal evolution of filamentous ascomycetes – evidence from molecular-data. Can J Bot 73:S811–S815

    Article  CAS  Google Scholar 

  • Spatafora JW, Sung GH, Johnson D, Hesse C, O'Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lucking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Budel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schultz M, Sipman H, Schoch CL (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98:1018–1028

    Article  PubMed  CAS  Google Scholar 

  • Spatafora JW, Sung GH, Sung JM, Hywel-Jones NL, White JF (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol 16:1701–1711

    Article  PubMed  CAS  Google Scholar 

  • Spatafora JW, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am J Bot 85:1569–1580

    Article  PubMed  CAS  Google Scholar 

  • Suh SO, Blackwell M (1999) Molecular phylogeny of the cleistothecial fungi placed in Cephalothecaceae and Pseudeurotiaceae. Mycologia 91:836–848

    Article  CAS  Google Scholar 

  • Tehler A (1995) Morphological data, molecular-data, and total evidence in phylogenetic analysis. Can J Bot 73:S667–S676

    Article  Google Scholar 

  • Tehler A, Irestedt M (2007) Parallel evolution of lichen growth forms in the family Roccellaceae (Arthoniales, Ascomycota). Cladistics 23:432–454

    Article  Google Scholar 

  • Thell A, Mattsson J-E, Kärnefelt I (1995) Lecanoralean ascus types in the lichenized families Alectoriaceae and Parmeliaceae. Cryptogam Bot 5:120–127

    Google Scholar 

  • Thiers HD (1984) The secotioid syndrome. Mycologia 76:1–8

    Article  Google Scholar 

  • Tibell L, Wedin M (2000) Mycocaliciales, a new order for nonlichenized calicioid fungi. Mycologia 92:577–581

    Article  Google Scholar 

  • Trail F (2007) Fungal cannons: explosive spore discharge in the Ascomycota. FEMS Microbiol Lett 276:12–18

    Article  PubMed  CAS  Google Scholar 

  • Vainio EA (1890) Étude sur la classification naturelle et la morphologie des lichens du Brésil. I. Acta Soc Faun Flora Fenn 7:1–256

    Google Scholar 

  • van Brummelen J (1995) A world-monograph of the genus Pseudombrophila (Pezizales, Ascomycotina). IHW, Munich

    Google Scholar 

  • von Arx JA (1973) Ostiolate and nonostiolate Pyrenomycetes. Proc K Ned Akad Wet 76:289–296

    Google Scholar 

  • von Höhnel F (1907) Fragmente zur Mykologie III Mitt, Nr 92–155. Sitz Kaiserl Akad Wiss Wien, Math Nat Kl, Abt 1 116:615–647

    Google Scholar 

  • Wang Z, Binder M, Schoch CL, Johnston PR, Spatafora JW, Hibbett DS (2006) Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): a nuclear rDNA phylogeny. Mol Phylogenet Evol 41:295–312

    Article  PubMed  CAS  Google Scholar 

  • Wedin M, Döring H, Gilenstam G (2004) Saprotrophy and lichenization as options for the same fungal species on different substrata: environmental plasticity and fungal lifestyles in the Stictis–Conotrema complex. New Phytol 164:459–465

    Article  Google Scholar 

  • Wedin M, Tibell L (1997) Phylogeny and evolution of Caliciaceae, Mycocaliciaceae, and Sphinctrinaceae (Ascomycota), with notes on the evolution of the prototunicate ascus. Can J Bot 75:1236–1242

    Article  Google Scholar 

  • Wedin M, Wiklund E, Crewe A, Döring H, Ekman S, Nyberg A, Schmitt I, Lumbsch HT (2005) Phylogenetic relationships of Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data. Mycol Res 109:159–172

    Article  PubMed  CAS  Google Scholar 

  • Weir A, Blackwell M (2001) Molecular data support the Laboulbeniales as a separate class of Ascomycota, Laboulbeniomycetes. Mycol Res 105:1182–1190

    Article  CAS  Google Scholar 

  • Wik L, Karlsson M, Johannesson H (2008) The evolutionary trajectory of the mating-type (mat) genes in Neurospora relates to reproductive behavior of taxa. BMC Evol Biol 8:109

    Article  PubMed  CAS  Google Scholar 

  • Winka K (2000) Phylogenetic relationships within the Ascomycota based on 18S rDNA sequences. PhD thesis, Umeå University, Umeå

    Google Scholar 

  • Zoller S, Scheidegger C, Sperisen C (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31:511–516

    Google Scholar 

Download references

Acknowledgements

The author thanks Thorsten Lumbsch (Chicago) for initially introducing me to this interesting topic and for continuously supporting and encouraging me in my research. I am indebted to Thorsten, Mariette Cole and Steffen Pauls (both St. Paul) for helpful comments on the manuscript. Anna Balla (Chicago) kindly provided the drawings in Fig. 8.1. My studies on fruiting body evolution in lichenized fungi were partly supported by a fellowship of the Deutscher Akademischer Austauschdienst (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imke Schmitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmitt, I. (2011). 8 Fruiting Body Evolution in the Ascomycota: a Molecular Perspective Integrating Lichenized and Non-Lichenized Groups. In: Pöggeler, S., Wöstemeyer, J. (eds) Evolution of Fungi and Fungal-Like Organisms. The Mycota, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19974-5_8

Download citation

Publish with us

Policies and ethics