Skip to main content

7 Evolution of the ‘Plant-Symbiotic’ Fungal Phylum, Glomeromycota

  • Chapter
  • First Online:
Book cover Evolution of Fungi and Fungal-Like Organisms

Part of the book series: The Mycota ((MYCOTA,volume 14))

Abstract

The most widespread and prominent symbiosis between land plants and fungi is the arbuscular mycorrhiza (AM). This type of mycorrhiza symbiosis is formed between approximately 80% of land plants and a monophyletic group of obligate symbiotic, multikaryotic and asexual fungi, the Glomeromycota. Despite the enormous ecological and economical importance of AM fungi, their biology is poorly understood. The focus here is, after reporting some historical aspects, on the recently advanced understanding of molecular phylogenetic relationships, the evolution and biogeography, and the obligate symbiotic endobacteria of AM fungi. Fossils and molecular clock estimates date the origin of AM symbioses to at least 460 MY ago, and AM fungi and land plants coevolved since then. Possibly, the fungi in the Glomeromycota were already ‘on the symbiotic track’ long before land plants originated. Aspects regarding the asexual evolution and heterokaryotic nature of glomeromycotan fungi and a feasible species concept are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerer R, Amirati J, Blanz P, Courtecuisse R, Desjardin DE, Gams W, Hallenberg N, Halling R, Hawksworth DL, Horak E, Korf RP, Mueller GM, Oberwinkler F, Rambold G, Summerbell RC, Triebel D, Watling R (2000) Open letter to the scientific community of mycologists. Can J Bot 78:981–983

    Google Scholar 

  • Angelard C, Colard A, Niculita-Hirzel H, Croll D, Sanders IR (2010) Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription. Curr Biol 20:1216–1221

    Article  PubMed  CAS  Google Scholar 

  • Benedetto A, Bonfante P (2004) 2004 snapshots of AM fungi: still an endless tale. Mycol Res 108:338–340

    Article  Google Scholar 

  • Benjamin RK (1979) Zygomycetes and their spores. In: Kendrick B (ed) The whole fungus, vol 2. National Museum of Natural Sciences and National Museum of Canada, Ottawa, pp 573–622

    Google Scholar 

  • Benny GL, Humber RA, Morton JB (2001) Zygomycota: Zygomycetes. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota, vol 7A. Systematics and evolution. Springer, Berlin Heidelberg New York, pp 113–146

    Google Scholar 

  • Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees and geologic time. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota, vol 7B. Systematics and evolution. Springer, Berlin Heidelberg New York, pp 229–245

    Google Scholar 

  • Bidartondo MI, et al. (2008) Preserving Accuracy in Genbank, Science 21:1616

    Article  Google Scholar 

  • Börstler B, Thiéry O, Sýkorová Z, Berner A, Redecker D (2010) Diversity of mitochondrial large subunit rDNA haplotypes of Glomus intraradices in two agricultural field experiments and two semi-natural grasslands. Mol Ecol 19:1497–1511

    Article  PubMed  CAS  Google Scholar 

  • Bucholtz F (1912) Beiträge zur Kenntnis der Gattung Endogone Link. Beih Bot Zbl 29:147–225

    Google Scholar 

  • Cai CY, Ouyang S, Wang Y, Fang ZJ, Rong JY, Geng LY, Li XX (1996) An Early Silurian vascular plant. Nature 379:592

    CAS  Google Scholar 

  • Castagnone-Sereno P (2006) Genetic variability and adaptive evolution in parthenogenetic root-knot nematodes. Heredity 96:282–289

    Article  PubMed  CAS  Google Scholar 

  • Check-Hayden E (2008) Evolution: Scandal! Sex-starved and still surviving. Nature 452:678–680

    Article  CAS  Google Scholar 

  • Corradi N, Kuhn G, Sanders IR (2004a) Monophyly of β-tubulin and H+−ATPase gene variants in Glomus intraradices: consequences for molecular evolutionary studies of AM fungal genes. Fungal Genet Biol 41:262–273

    Article  PubMed  CAS  Google Scholar 

  • Corradi N, Hijri M, Fumagalli L, Sanders IR (2004b) Arbuscular mycorrhizal fungi (Glomeromycota) harbour ancient fungal tubulin genes that resemble those of the chytrids (Chytridiomycota). Fungal Genet Biol 41:1037–1045

    Article  PubMed  CAS  Google Scholar 

  • Corradi N, Sanders IR (2006) Evolution of the P-type II ATPase gene family in the fungi and presence of structural genomic changes among isolates of Glomus intraradices. BMC Evol Biol 6:21

    Article  PubMed  CAS  Google Scholar 

  • Couch BC, Fudal I, Lebrun MH, Tharreau D, Valent B, Kim PV, Nottéghem JL, Kohn LM (2005) Origins of host-specific populations of the blast pathogen, Magnaporthe oryzae, in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 170:613–630

    Article  PubMed  CAS  Google Scholar 

  • Coyne JA, Orr HA (1998) The evolutionary genetics of speciation. Phil Trans R Soc B:287–305

    Google Scholar 

  • Croll D, Wille L, Gamper HA, Mathimaran N, Lammers PJ, Corradi N, Sanders IR (2008) Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 178:672–687

    Article  PubMed  CAS  Google Scholar 

  • Dangeard PA (1900) Le Rhizophagus populinus. Botaniste 7:285–287

    Google Scholar 

  • de Souza FA, Leeflang P, Kowalchuk GA, van Veen JA, Smit E (2004) PCR-denaturing gradient gel electrophoresis profiling of the inter- and intraspecies 18S rRNA gene sequence heterogeneity is an accurate and sensitive method to assess species diversity of arbuscular mycorrhizal fungi of the genus Gigaspora. Appl Environ Microbiol 70:1413–1424

    Article  PubMed  CAS  Google Scholar 

  • Dotzler N, Krings M, Hass H, Walker C, Taylor TN, Agerer R (2009) Acaulosporoid glomeromycotan spores with germination shields from 400-million-year-old Rhynie chert. Mycol Progr 8:9–18

    Article  Google Scholar 

  • Dotzler N, Krings M, Taylor TN, Agerer R (2006) Germination shields in Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae) from the 400 million-year-old Rhynie chert. Mycol Progr 5:178–184

    Article  Google Scholar 

  • Douhan GW, Petersen C, Bledsoe CS, Rizzo DM (2005) Contrasting root associated fungi of three common oak-woodland plant species based on molecular identification: host specificity or non-specific amplification? Mycorrhiza 15:365–372

    Article  PubMed  CAS  Google Scholar 

  • Ekelund F, Rønn R (2008) If you don’t need change, maybe you don’t need sex. Nature 453:587.

    Article  PubMed  CAS  Google Scholar 

  • Ferrol N, Barea JM, Azcon-Aguilar C (2000) The plasma membrane H+−ATPase gene family in the arbuscular mycorrhizal fungus Glomus mosseae. Curr Genet 37:112–118

    Article  PubMed  CAS  Google Scholar 

  • Fitter AH (2005) Darkness visible: reflections on underground ecology. J Ecol 93:231–243

    Article  Google Scholar 

  • Fontaneto DE, Herniou EA, Boschetti C, Caprioli M, Melone G, Ricci C, Barraclough TG (2007) Independently evolving species in asexual bdelloid rotifers. PLoS Biol 5:e87

    Article  PubMed  CAS  Google Scholar 

  • Frank AB (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Dtsch Bot Ges 3:128–145

    Google Scholar 

  • Franke M, Morton JB (1994) Ontogenetic comparisons of arbuscular mycorrhizal fungi Scutellospora heterogama and Scutellospora pellucida: revision of taxonomic character concepts, species descriptions, and phylogenetic hypotheses. Can J Bot 72:122–134

    Article  Google Scholar 

  • Gallaud I (1905) Etudes sur les mycorrhizes endotrophes. Rev Gen Bot 17:5–48, 66–83, 123–135, 223–239, 313–325, 425–433, 479–500

    Google Scholar 

  • Gamper H, Walker C, Schüßler A (2009) Diversispora celata sp. nov: molecular ecology and phylotaxonomy of an inconspicuous arbuscular mycorrhizal fungus. New Phytol 182:495–506

    Article  PubMed  CAS  Google Scholar 

  • Gehrig H, Schüßler A, Kluge M (1996) Geosiphon pyriformis, a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the Glomerales: evidence by SSU rRNA analysis. J Mol Evol 43:71–81

    Article  PubMed  CAS  Google Scholar 

  • Gerdemann JW (1968) Vesicular–arbuscular mycorrhiza and plant growth. Annu Rev Phytopathol 6:397–418

    Article  Google Scholar 

  • Gerdemann JW, Trappe JM (1974) Endogonaceae in the Pacific Northwest. Mycol Mem 5:1–76

    Google Scholar 

  • Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol 69:616–624

    Article  PubMed  CAS  Google Scholar 

  • Goto BT, Maia LC, Oehl F (2008) Ambispora brasiliensis a new ornamented species in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 105:11–18

    Google Scholar 

  • Hamilton WD (2001) Narrow roads of gene land, vol 2. Evolution of sex. Oxford University Press, Oxford

    Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB, Kumar S (2003) Genomic clocks and evolutionary timescales. Trends Genet 19:200–206

    Article  CAS  Google Scholar 

  • Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter A (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384

    Article  Google Scholar 

  • Helgason T, Watson IJ, Young JPW (2003) Phylogeny of the Glomerales and Diversisporales (Fungi: Glomeromycota) from actin and elongation factor 1-alpha sequences. FEMS Microbiol Lett 229:127–132

    Article  PubMed  CAS  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch HT, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miądlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:160–163

    Article  PubMed  CAS  Google Scholar 

  • Husband R, Herre EA, Young JP (2002) Temporal variation in the arbuscular mycorrhizal communities colonising seedlings in a tropical forest. FEMS Microbiol Ecol 42:131–136

    Article  PubMed  CAS  Google Scholar 

  • Ijdo M, Schtickzelle N, Cranenbrouck S, Declerck S (2010) Do arbuscular mycorrhizal fungi with contrasting life-history strategies differ in their responses to repeated defoliation? FEMS Microbiol Ecol 72:114–122

    Article  PubMed  CAS  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox C, Celio G, Gueidan C, Fraker E, Miądlikowska J, Lumbsch, HT, Rauhut A, Reeb V, Arnold EA, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O'Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O'Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton J, Sugiyama J, Rossman AY, Rogers, JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin D, Spatafora J, Vilgalys R (2006) Reconstructing the early evolution of the fungi using a six gene phylogeny. Nature 443:818–822

    Article  PubMed  CAS  Google Scholar 

  • Jansa J, Mozafar A, Banke S, McDonald BA, Frossard E (2002) Intra- and intersporal diversity of ITS rDNA sequences in Glomus intraradices assessed by cloning and sequencing, and by SSCP analysis. Mycol Res 106:670–681

    Article  CAS  Google Scholar 

  • Jastrow JD, Miller RM (1997) Soil aggregate stabilization and carbon sequestration: feedbacks through organomineral associations. In: Lal R, Kimble J, Follet R, Stewart B (eds) Soil processes and the carbon cycle. CRC, Boca Raton

    Google Scholar 

  • Johnson D, Vandenkoornhuyse PJ, Leake J, Gilbert L, Booth RE, Grime JP, Young JPW, Read D (2003) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515

    Article  Google Scholar 

  • Keeling PJ (2003) Congruent evidence from α-tubulin and β-tubulin gene phylogenies for a zygomycete origin of microsporidia. Fungal Genet Biol 38:298–309

    Article  PubMed  CAS  Google Scholar 

  • Kjøller R, Rosendahl S (2000) Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (single stranded conformation polymorphism). Plant Soil 226:189–196

    Article  Google Scholar 

  • Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336:435–440

    Article  PubMed  CAS  Google Scholar 

  • Kottke I, Haug I, Setaro S, Suárez JP, Weiß M, Preußing M, Nebel M, Oberwinkler F (2008) Guilds of mycorrhizal fungi and their relation to trees, ericads, orchids and liverworts in a neotropical mountain rain forest. Basic Appl Ecol 9:13–23

    Article  CAS  Google Scholar 

  • Kramadibrata K, Walker C, Schwarzott D, Schüßler A (2000) A new species of Scutellospora with a coiled germination shield. Ann Bot 86:21–27

    Article  CAS  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2011) A phylogenetic framework for the natural systematics of arbuscular mycorrhizal fungi - from phylum to species-level resolution and environmental deep sequencing. New Phytol: in revision

    Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    Article  PubMed  CAS  Google Scholar 

  • Krüger M, Walker C, Schüßler A (2011) Acaulospora brasiliensis comb. nov. and Acaulospora alpina (Glomeromycota) from upland Scotland: morphology, molecular phylogeny and DNA based detection in roots. Mycorrhiza. doi: 10.1007/s00572-011-0361-7

  • Kuga Y, Saito K, Nayuki K, Peterson RL, Saito M (2008) Ultrastructure of rapidly frozen and freeze-substituted germ tubes of an arbuscular mycorrhizal fungus and localization of polyphosphate. New Phytol 178:189–200

    Article  PubMed  CAS  Google Scholar 

  • Lanfranco L, Delpero M, Bonfante P (1999) Intrasporal variability of ribosomal sequences in the endomycorrhizal fungus Gigaspora margarita. Mol Ecol 8:37–45

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Young JP (2009) The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. New Phytol 183:200–211

    Article  PubMed  CAS  Google Scholar 

  • Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105

    Article  Google Scholar 

  • LoBuglio KF, Pitt JI, Taylor JW (1993) Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual Talaromyces state among asexual Penicillium species in subgenus Biverticillium. Mycologia 85:592–604

    Article  CAS  Google Scholar 

  • Lumini E, Bianciotto V, Jargeat P, Novero M, Salvioli A, Faccio A, Bécard G, Bonfante P (2007) Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cell Microbiol 9:1716–1729

    Article  PubMed  CAS  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  PubMed  CAS  Google Scholar 

  • Mathimaran N, Falquet L, Ineichen K, Picard C, Redecker D, Boller T, Wiemken A (2008) Microsatellites for disentangling underground networks: strain-specific identification of Glomus intraradices, an arbuscular mycorrhizal fungus. Fungal Genet Biol 45:812–817

    Article  PubMed  CAS  Google Scholar 

  • Mayden RL (1997) A hierarchy of species concepts: The denouement in the saga of the species problem. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of biodiversity. Chapman and Hall, New York, pp 381–424

    Google Scholar 

  • Mercereau-Puijalon O, Barale JC, Bischoff E (2002) Three multigene families in Plasmodium parasites: facts and questions. Int J Parasitol 32:1323–1344

    Article  PubMed  CAS  Google Scholar 

  • Morton JB (2000) Evolution of endophytism in arbuscular mycorrhizal fungi of Glomales. In: Bacon CW, White JH (eds) Microbial endophytes. Dekker, New York, pp 121–140

    Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporacea and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–491

    Google Scholar 

  • Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera, Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181–195

    Article  Google Scholar 

  • Morton JB, Msiska Z (2010) Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza 20:483–496

    Google Scholar 

  • Mosse B (1953) Fructifications associated with mycorrhizal strawberry roots. Nature 171:974

    Article  PubMed  CAS  Google Scholar 

  • Mosse B, Bowen GD (1968) A key to the recognition of some Endogone spore types. Trans Br Mycol Soc 51:469–483

    Article  Google Scholar 

  • Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  Google Scholar 

  • Naumann M, Schüßler A, Bonfante P (2010) The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes. ISME J 4:862–871

    Article  PubMed  Google Scholar 

  • Nicolson TH, Gerdemann JW (1968) Mycorrhizal Endogone species. Mycologia 60:313–325

    Article  Google Scholar 

  • Nielsen KB, Kjøller R, Olsson PA, Schweiger PF, Andersen FØ, Rosendahl S (2004) Colonization intensity and molecular diversity of arbuscular mycorrhizal fungi in the aquatic plants Littorella uniflora and Lobelia dortmanna in Southern Sweden. Mycol Res 108:616–625

    Article  PubMed  CAS  Google Scholar 

  • Normark BB, Judson OP, Moran NA (2003) Genomic signatures of ancient asexual lineages. Biol J Linn Soc 79:69–84

    Article  Google Scholar 

  • O'Donnell K, Lutzoni F, Ward TJ, Benny GL (2001) Evolutionary relationships among mucoralean fungi (Zygomycota): evidence for family polyphyly on a large scale. Mycologia 93:286–297

    Article  Google Scholar 

  • Öpik M, Moora M, Zobel M, Saks Ü, Wheatley R, Wright F, Daniell T (2008) High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytol 179:867–876

    Article  PubMed  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Rev Microbiol 6:763–776

    Article  CAS  Google Scholar 

  • Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733–737

    Article  PubMed  CAS  Google Scholar 

  • Peyronel B (1937) Le “Endogyne” quail produttrici di micorrize endotrofische nell fanerogame alpestri. Nuovo Gior Bot Ital N S 44:584–586

    Article  Google Scholar 

  • Phipps CJ, Taylor TN (1996) Mixed arbuscular-mycorrhizae from the Triassic of Antarctica. Mycologia 88:707–714

    Article  Google Scholar 

  • Pirozynski KA, Dalpé Y (1989) Geological history of the Glomaceae with particular reference to mycorrhizal symbiosis. Symbiosis 7:1–36

    Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. BioSystems 6:153–164

    Article  PubMed  CAS  Google Scholar 

  • Poxleitner MK, Carpenter ML, Mancuso JJ, Wang CJR, Dawson SC, Cande WZ (2008) Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science 319:1530–1533

    Article  PubMed  CAS  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  PubMed  CAS  Google Scholar 

  • Redecker D (2002) Molecular identification and phylogeny of arbuscular mycorrhizal fungi. Plant Soil 244:67–73

    Article  CAS  Google Scholar 

  • Redecker D, Hijri M, Dulieu H, Sanders IR (1999) Phylogenetic analysis of a dataset of fungal 5.8S rDNA sequences shows that highly divergent copies of Internal Transcribed Spacers reported from Scutellospora castanea are of Ascomycete origin. Fungal Genet Biol 28:238–244

    Article  PubMed  CAS  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000a) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  PubMed  CAS  Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000b) Molecular phylogeny of the arbuscular mycorrhizal fungi Glomus sinuosum and Sclerocystis coremioides. Mycologia 92:282–285

    Article  CAS  Google Scholar 

  • Redecker D, Raab P, Oehl F, Camacho FJ, Courtecuisse R (2007) A novel clade of sporocarp-forming species of glomeromycotan fungi in the Diversisporales lineage. Mycol Progress 6:35–44

    Article  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME (2006) Global variation in copy number in the human genome. Nature 444:444–454

    Article  PubMed  CAS  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four-hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    Article  PubMed  CAS  Google Scholar 

  • Requena N, Breuninger M, Franken P, Ocón A (2003) Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+−ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiol 132:1540–1549

    Article  PubMed  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Article  Google Scholar 

  • Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–266

    Article  PubMed  Google Scholar 

  • Rosendahl S, McGee P, Morton JB. (2009) Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol Ecol 18:4316–4329

    Article  PubMed  Google Scholar 

  • Rubinstein CV, Gerrienne P, De La Puente GS, Astini RA, Steemans P (2010) Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol 188:365–369

    Article  PubMed  CAS  Google Scholar 

  • Scheublin TR, Ridgway KP, Young JPW, van der Heijden MGA (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246

    Article  PubMed  CAS  Google Scholar 

  • Schüßler A (1999) Glomales SSU rRNA gene diversity. New Phytol 144:205–207

    Article  Google Scholar 

  • Schüßler A (2000) Glomus claroideum forms an arbuscular mycorrhiza-like symbiosis with the hornwort Anthoceros punctatus. Mycorrhiza 10:15–21

    Article  Google Scholar 

  • Schüßler A (2002) Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. Plant Soil 244:75–83

    Article  Google Scholar 

  • Schüßler A, Kluge M (2001) Geosiphon pyriforme, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for arbuscular mycorrhizal research. In: Hock B (ed) The Mycota, vol 9. Fungal associations. Springer, Berlin Heidelberg New York, pp 151–161

    Google Scholar 

  • Schüßler A, Wolf E (2005) Geosiphon pyriformis – a glomeromycotan soil fungus forming endosymbiosis with cyanobacteria. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas, Soil biology, vol 4. Springer, Berlin Heidelberg New York, pp 271–289

    Chapter  Google Scholar 

  • Schüßler A, Mollenhauer D, Schnepf E, Kluge M (1994) Geosiphon pyriforme, an endosymbiotic association of fungus and cyanobacteria: the spore structure resembles that of arbuscular mycorrhizal (AM) fungi. Botanica Acta 107:36–45

    Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Schüßler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936

    Article  PubMed  CAS  Google Scholar 

  • Schüßler A, Martin H, Cohen D, Wipf D (2008) The Geosiphon–Nostoc symbiosis as a tool to characterize symbiotic nutrient transporters in the arbuscular mycorrhiza symbiosis. Biol Mol Plant Microbe Interact 6:1–6

    Google Scholar 

  • Schüßler A, Walker C (2010) Arbuscular Mycorrhizal Fungi: placing an experimental model fungus in its natural systematic relationship - culture BEG47 is Diversispora epigaea, not Glomus versiforme. PLoS ONE: in revision

    Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and genera. Arthur Schüßler & Christopher Walker, Gloucester. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. Electronic version freely available online at www.amf-phylogeny.com

    Google Scholar 

  • Schwarzott D, Walker C, Schüßler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is non-monophyletic. Mol Phylogenet Evol 21:190–197

    Article  PubMed  CAS  Google Scholar 

  • Sieverding E, Oehl F (2006) Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. J Appl Bot Food Qual 80:69–81

    Google Scholar 

  • Simon L, Bousquet J, Le!vesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Google Scholar 

  • Smith SA, Beaulieu JM, Donoghue MJ (2010) An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Nat Acad Sci 107:5897–5902

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Stockinger H, Walker C, Schüßler A (2009) Glomus intraradices DAOM197198', a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187

    Article  PubMed  Google Scholar 

  • Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474

    Article  PubMed  CAS  Google Scholar 

  • Strullu-Derrien C, Strullu DG (2007) Mycorrhization of fossil and living plants. Crit Rev Paleoevol 6:483–494

    Google Scholar 

  • Stubblefield SP, Taylor TN, Trappe JM (1987) Fossil mycorrhizae: a case for symbiosis. Science 237:59–60

    Article  PubMed  CAS  Google Scholar 

  • Stukenbrock EH, Rosendahl S (2005) Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus spp) studied by multilocus genotyping of single spores. Mol Ecol 14:743–752

    Article  PubMed  CAS  Google Scholar 

  • Taga M, Tsuchiya D, Murata M (2003) Dynamic changes of rDNA condensation state during mitosis in filamentous fungi revealed by fluorescence in situ hybridisation. Mycol Res 107:1012–1020

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y, Saikawa M, Watanabe MM, Sugiyama J (2003) Molecular phylogeny of Zygomycota based on EF-1a and RPB1 sequences: limitations and utility of alternative markers to rDNA. Mol Phylogen Evol 30:438–449

    Article  CAS  Google Scholar 

  • Taylor JW, Berbee ML (2006) Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98:838–849

    Article  PubMed  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  PubMed  CAS  Google Scholar 

  • Thaxter R (1922) A revision of the Endogoneae. Proc Am Acad Arts Sci 57:291–351

    Article  Google Scholar 

  • Trouvelot S, van Tuinen D, Hijri M, Gianinazzi-Pearson V (1999) Visualization of ribosomal DNA loci in spore interphasic nuclei of glomalean fungi by fluorescence in situ hybridization. Mycorrhiza 8:203–206

    Article  CAS  Google Scholar 

  • Tulasne LR, Tulasne C (1845) Fungi nonnulli hypogaei, novi v. minus cogniti act. Giorn Bot Ital 2:35–63

    Google Scholar 

  • Tulasne LR, Tulasne C (1851) Fungi hypogaei, 1st edn. Paris

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887

    Article  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564

    Article  PubMed  CAS  Google Scholar 

  • Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Coexisting grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Yeun LH, Xue JY, Liu Y, Ané JM, Qiu YL (2010) Presence of three mycorrhizal genes in the common ancestors of land plants suggests a key role of mycorrhizas in the colonization of land plants. New Phytol 186:514–525

    Article  PubMed  Google Scholar 

  • Walker C, Sanders FE (1986) Taxonomic concepts in the Endogonaceae: III. The separation of Scutellospora gen. nov. from Gigaspora Gerd. and Trappe. Mycotaxon 27:169–182

    Google Scholar 

  • Walker C, Schüßler A (2004) Nomenclatural clarifications and new taxa in the Glomeromycota. Mycol Res 108:981–982

    Article  Google Scholar 

  • Walker C, Vestberg M, Demircik F, Stockinger H, Saito M, Sawaki H, Nishmura I, Schüßler A (2007) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycol Res 111:137–153

    Article  PubMed  Google Scholar 

  • Wellman CH, Osterloff PL, Mohluddin U (2003) Fragments of the earliest land plants. Nature 425:282–285

    Article  PubMed  CAS  Google Scholar 

  • Yadav, V, Kumar, M, Deep, DK, Kumar, H, Sharma, R, Tripathi, T, Tuteja, N, Saxena, AK, Johri, AK (2010). A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in the phosphate transport to the host plant. J Biol Chem 285:26532–26544

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Q, Blaylock, LA, Harrison, MJ (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22:1483–1497

    Google Scholar 

Download references

Acknowledgements

We thank Manuela Krüger for her help with the artwork and for helpful comments on and proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Schüßler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schüßler, A., Walker, C. (2011). 7 Evolution of the ‘Plant-Symbiotic’ Fungal Phylum, Glomeromycota . In: Pöggeler, S., Wöstemeyer, J. (eds) Evolution of Fungi and Fungal-Like Organisms. The Mycota, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19974-5_7

Download citation

Publish with us

Policies and ethics