Skip to main content

1 The Protistan Origins of Animals and Fungi

  • Chapter
  • First Online:
Evolution of Fungi and Fungal-Like Organisms

Part of the book series: The Mycota ((MYCOTA,volume 14))

Abstract

A close evolutionary relationship between Metazoa (animals) and Fungi was proposed over 20 years ago. The name Opisthokonta reflects the presence of a single, posteriorly directed flagellum found on the reproductive cells of most metazoans and some fungi. Subsequent molecular work confirmed this relationship and also identified several protistan groups (including the choanoflagellates, ichthyosporeans and nucleariids) belonging to this clade. In this chapter we review the literature on this group in order to describe the opisthokont lineages and the current thinking about how they are related to each other. The phylogeny of the opisthokonts is far from complete and we will discuss the areas that need to be addressed, as well as current evidence on the possible sister-groups of the opisthokonts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin M and King N (2008) The premetazoan ancestry of cadherins. Science 319:946–948

    Article  PubMed  CAS  Google Scholar 

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, et al. (2005) The new higher level of classification of eukaryotes with emphasis on the taxonomy of protists. J Euk Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Aguinaldo AA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    Article  PubMed  CAS  Google Scholar 

  • Ahluwalia KBN, Maheshwari N, Deka RC (1997) Rhinosporidiosis: a study that resolves etiologic controversies. Am J Rhinol 11:479–483

    Article  PubMed  CAS  Google Scholar 

  • Amaral-Zettler LA, Nerad TA, O’Kelly J, Sogin ML (2001) The nucleariid amoebae: more protists at the animal–fungal boundary. J Euk Microbiol 48:293–297

    Article  Google Scholar 

  • Amaral-Zettler LA, Gómez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s River of Fire. Nature 417:417

    Article  CAS  Google Scholar 

  • Anderson CL, Canning EU, Okamura B (1998) A triploblasts origin for Myxozoa? Nature 392:346–347

    Article  PubMed  CAS  Google Scholar 

  • Anderson FE, Córdoba AJ, Thollesson M (2004) Bilaterian phylogeny based on analyses of a region of the sodium–potassium ATPase α-subunit gene. J Mol Evol 58:252–268

    Article  PubMed  CAS  Google Scholar 

  • Arkush, KD, Frasca S Jr, Hedrick RP (1998) Pathology associated with the rosette agent, a systemic protist infecting salmonid fishes. J Aquat Anim Health 10:1–11

    Article  Google Scholar 

  • Baker GC, Beebee TJ, Ragan MA (1999) Prototheca richardsi, a pathogen of anuran larvae, is related to a clade of protistan parasites near the animal–fungal divergence. Microbiology 145:1777–1784

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL, Palmer JD (1993) Animals and fungi are each others closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90:11558–11562

    Article  PubMed  CAS  Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA (2007) Yeast forms dominant fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077

    Article  PubMed  CAS  Google Scholar 

  • Bass D, Moreira D, López-García P, Polet S, Chao EE, von der Heyden S, Pawlowski J, Cavalier-Smith T (2005) Polyubiquitin insertions and the phylogeny of Cercozoa and Rhizaria. Protist 156:149–161

    Article  PubMed  CAS  Google Scholar 

  • Baurain D, Brinkmann H, Philippe H (2007) Lack of resolution in the animal phylogeny: Closely spaced cladogeneses or undetected systematic errors? Mol Biol Evol 24:6–9

    Article  PubMed  CAS  Google Scholar 

  • Benny GL, O’Donnell K (2000) Amoebidium parasiticum is a protozoan, not a Trichomycete. Mycologica 92:1133–1137

    Article  Google Scholar 

  • Boenigk J, Arndt H (2000) Comparative studies on the feeding behavior of two heterotrophic nanoflagellates: the filter-feeding choanoflagellate Monosiga ovata and the raptorial-feeding kinetoplastid Rhynchomonas nasuta. Aqua Micro Eco 22:243–249

    Article  Google Scholar 

  • Borchiellini C, Manuel M, Alivon E, Boury-Esnault N, Vacelet J, Le Parco Y (2001) Sponge paraphyly and the origin of Metazoa. J Evol Biol 14:171–179

    Article  Google Scholar 

  • Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444:85–88

    Article  PubMed  CAS  Google Scholar 

  • Bourlat SJ, Nielsen C, Economou AD, Telford M (2008) Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom. Mol Phylogenet Evol 49:23–31

    Article  PubMed  CAS  Google Scholar 

  • Bourrelly P (1968) Les algues d’eau douce. Tome II: Les algues jaunes et brunes. Paris: Boubée et Cie

    Google Scholar 

  • Bozarth RF (1972) Mycoviruses: a new dimension in microbiology. Environ Health Perspect 2:23–39

    Article  PubMed  CAS  Google Scholar 

  • Brown MW, Spiegel FW, Silberman JD (2009) Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evol 26:2699–2709

    Article  PubMed  CAS  Google Scholar 

  • Brown TA, Waring RB, Scazzocchio C, Davies RW (1985) The Aspergillus nidulans mitochondrial genome. Curr Genet 9:113–117

    Article  PubMed  CAS  Google Scholar 

  • Bullerwell CE, Leigh J, Forget L, Lang BF (2003) A comparison of three fission yeast mitochondrial genomes. Nucleic Acids Research 31:759–768

    Article  PubMed  CAS  Google Scholar 

  • Burger G, Forget L, Zhu Y, Gray MW, Lang BF (2003) Unique mitochondrial genome architecture in unicellular relatives of animals. Proc Natl Acad Sci USA 100:892–897

    Article  PubMed  CAS  Google Scholar 

  • Burger G, Yan Y, Javadi P, Lang BF (2009) Group I-intron trans-splicing and mRNA editing in the mitochondria of placozoan animals. Trends Genet 25:381–386

    Article  PubMed  CAS  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Minge M, Skjæveland Å, Nikolaev SI, Jakobsen KS, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 8:e790

    Article  CAS  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol Lett 23:366–369

    Article  Google Scholar 

  • Buss KW (1987) The evolution of individuality. Princeton University Press, Princeton. 203 pp

    Google Scholar 

  • Cafaro MJ (2005) Eccrinales (Trichomycetes) are not fungi, but a clade of protists at the early divergence of animals and fungi. Mol Phy Evol 35:21–34

    Article  CAS  Google Scholar 

  • Cann JP (1986) The feeding behavior and structure of Nuclearia delicatula (Filosea: Aconchulinida) J Euk Microbiol 33:392–396

    Google Scholar 

  • Cardoso MAG, Tambor JHM, Nobrega FG (2007) The mitochondrial genome from the thermal dimorphic fungus Paracoccidioides brasiliensis. Yeast 24:607–616

    Article  PubMed  CAS  Google Scholar 

  • Carr M, Leadbeater BSC, Baldauf SL (2010). Conserved meiotic genes point to sex in the choanoflagellates. J Euk Microbiol 57:56–62

    Article  PubMed  CAS  Google Scholar 

  • Carr M, Leadbeater BSC, Hassan R, Nelson M, Baldauf SL (2008a). Molecular phylogeny of choanoflagellates, the sister group to Metazoa. Proc Natl Acad Sci USA 105:16641–16646

    Article  PubMed  CAS  Google Scholar 

  • Carr M, Nelson M, Leadbeater BSC, Baldauf SL (2008b) Three families of LTR retrotransposons are present in the genome of the choanoflagellate Monosiga brevicollis. Protist 159:579–590

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1987) The origin of fungi and pseudofungi in: Rayner ADM, Brasierand M and Moore D (eds.) Evolutionary biology of fungi, pp. 339–353, Cambridge: Cambridge University Press

    Google Scholar 

  • Cavalier-Smith T (1993) Kingdom Protozoa and its 18 phyla. Microbiological Reviews 57:953–994

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1998) A revised six kingdom system of life. Biol Rev 73:203–266

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2000) Flagellate megaevolution: The basis for eukaryote diversification. In: Green J.R., Leadbeater, B.S.C. (eds) The flagellates. Taylor and Francis, London, pp 361–390

    Google Scholar 

  • Cavalier-Smith T (2001) What are fungi?, in J.W. McLaughlin, J.W. McLaughlin and P.A. Lemke (eds.) The Mycota VII Part A, Systematics and evolution, pp. 3–37, Berlin Heidelberg: Springer Verlag

    Chapter  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2003) Protist phylogeny and the high-level classification of Protozoa. Europ J Protistol 39:338–349

    Article  Google Scholar 

  • Cavalier-Smith T (2009) Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryotic basal radiations. J Eukaryot Microbiol 56:26–33

    Article  PubMed  Google Scholar 

  • Cavalier-Smith T, Allsopp MTEP (1996) Corallochytrium, an enigmatic non-flagellate protozoan related to choanoflagellates. Europ J Protistol 32:306–310

    Article  Google Scholar 

  • Cavalier-Smith, T, Chao EEY (1995) The opalozoan Apusomonas is related to the common ancestor of animals, fungi and choanoflagellates. Proc R Soc B 261:1

    Google Scholar 

  • Cavalier-Smith, T, Chao EEY (1997) Sarcomonad ribosomal RNA sequences, rhizopod phylogeny, and the origin of euglyphid amoebae. Arch Protistenkd 147:227–236

    Article  Google Scholar 

  • Cavalier-Smith, T, Chao EEY (2003) Phylogeny of Choanozoa, Apusozoa, and other protozoa and early eukaryotic megaevolution. J Mol Evol 56:540–563

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T, Chao EEY, Oates B (2004) Molecular phylogeny of Amoebozoa and the evolutionary significance of the unikont Phalansterium. Europ J Protistol 40:21–48

    Article  Google Scholar 

  • Chadefaud M (1960) Les végétaux non vasulaires (Cryptogamie). Traité de botanique systématique, vol. 3. Chadeauf and Emberger. pp. 1018. Paris: Massor et Cie

    Google Scholar 

  • Chen M, Chen F, Yu Y, Ji J, Kong F (2008) Genetic diversity of eukaryotic microorganisms in Lake Taihu, a large shallow subtropical lake in China. Microb Ecol 56:572–583

    Article  PubMed  CAS  Google Scholar 

  • Cummings DJ, Mcnally KL, Domenico JM, Matsuura ET (1990) The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 17:375–402

    Article  PubMed  CAS  Google Scholar 

  • Deasey MC (1982) Aspects of sorogenesis in the cellular slime mold Fonticula alba. PhD thesis, University of North Carolina, Chapel Hill

    Google Scholar 

  • Dellaporta SL, Xu A, Sagasser S, Jakob W, Moreno MA, Buss LW, Schierwater B (2006) Mitochondrial genome of Trichoplax adhaerens support Placozoa as the basal lower metazoan phylum. Proc Natl Acad Sci USA 103:8751–8756

    Article  CAS  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, et al. (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  PubMed  CAS  Google Scholar 

  • Dyková I, Veverková M, Fiala I, Machácková B, Pecková H (2003) Nuclearia pattersoni sp. n. (Filosea), a new species of amphizoic amoeba isolated from gills of roach (Rutilus rutilus), and its rickettsial endosymbiont. Folia Parasit 50:161–170

    Google Scholar 

  • Erpenbeck D, Voigt O, Adamski M, Adamska M, Hooper JNA, Wörheide G, Degnan BM (2007) Mitochondrial diversity of early-branching Metazoa is revealed by the complete mt genome of a Haplosclerid Demosponge. Mol Biol Evol 24:19–22

    Article  PubMed  CAS  Google Scholar 

  • Farabee MJ (2002). Biological diversity: animals I, II and III, in: Online biology book. Available at http://www.emc.maricopa.edu/faculty/farabee/BIOBK/ BioBookTOC.HTML

  • Feldman SH, Wimsatt JH, Green DE (2005) Phylogenetic classification of the frog pathogen Amphibiothecum (Dermosporidium) penneri based on small ribosomal subunit sequencing. J Wildl Dis 41:701–706

    PubMed  CAS  Google Scholar 

  • Gill EE, Fast NM (2006) Assessing the microsporidia–fungi relationship: combined phylogenetic analysis of eight genes. Gene 375:103–109

    Article  PubMed  CAS  Google Scholar 

  • Gromov BV (2000) Algal parasites of the genera Aphelidium, Amoeboaphelidium, and Pseudoaphelidium from the Cienkovski’s “Monadinea” group as representatives of a new class. Zool Zhurn 79:517–525

    Google Scholar 

  • Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rümmele SE, Bhattacharya D (2007) Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with chromoalveolates. Mol Biol Evol 24:1702–1713

    Article  PubMed  CAS  Google Scholar 

  • Haeckel E (1874) Die Gastraea-Theorie, die phylogenetischen Classification des Thierreichs und die Homologie der Keimblätter. Z Naturwiss 8:1–55

    Google Scholar 

  • Haen KM, Lang BF, Pomponi SA, Lavrov DV (2007) Glass sponges and bilaterian animals share derived mitochondrial genomic features: A common ancestry or parallel evolution? Mol Biol Evol 24:1518–1527

    Article  PubMed  CAS  Google Scholar 

  • Halanych KM (2004) The new view of animal phylogeny. Annu Rev Ecol Evol Syst 35:229–256

    Article  Google Scholar 

  • Halanych KM, Bacheller JD, Aguinaldo AMA, Liva SM, Hillis DM, Lake JA (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:1641–1643

    Article  PubMed  CAS  Google Scholar 

  • Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB and Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA 106:3859–3864

    Article  PubMed  CAS  Google Scholar 

  • Harrell LW, Elston RA, Scott TM, Wilkinson MT (1986) A significant new systemic disease of net-pen reared chinook salmon (Oncorhyncus tshawytscha) brook stock. Aquaculture 55:249–262

    Article  Google Scholar 

  • Hejnol A, Martindale MQ (2008) Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456:382–386

    Article  PubMed  CAS  Google Scholar 

  • Hendy MD, Penny D (1989) A framework for the quantitative study of evolutionary trees. Syst Zool 38:297–309

    Article  Google Scholar 

  • Herman RL (1984) Ichthyophonus-like infection in newts (Notophthalmus viridescens Rafinesque) J Wildlife Dis 20:55–56

    Google Scholar 

  • Herr RA, Ajello L, Taylor JW, Arseculeratne SN, Mendoza L (1999) Phylogenetic analysis of Rhinosporidium seeberis 18S small-subunit ribosomal DNA groups this pathogen among members of the protoctistan Mesomycetozoa clade. J Clin Microbiol 37:2750–2754

    PubMed  CAS  Google Scholar 

  • Hertel LA, Bayne C, Loker ES (2002) The symbiont Capsaspora owczarzaki, nov. gen. sp., isolated from three strains of the pulmonate snail Biomphalaria glabrata is related to members of the Mesomycetozoa. Int J Parasit 32:1183–1191

    Article  CAS  Google Scholar 

  • Hibberd DJ (1975) Observations on the ultrastructure of the choanoflagellate Codosiga botrytis (ehr.) Saville–Kent with special reference to the flagellar apparatus. J Cell Sci 17:191–219

    PubMed  CAS  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, et al. (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hyman LH (1940) The Invertebrates, vol. 1, New York: McGraw-Hill

    Google Scholar 

  • James TY, Kauff F, Schoch L, Matheny PB, Hofstetter V, et al. (2006a) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    Article  PubMed  CAS  Google Scholar 

  • James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ, Grffith GW, Vilgalys R (2006b) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota) Mycologia 98:860–871

    Google Scholar 

  • James-Clark H (1866) Note on the infusoria flagellata and the spongiae ciliatae. Am J Sci 1:113–114

    Google Scholar 

  • James-Clark H (1868) On the spongiae ciliatae as infusoria flagellata; or observations on the structure, animality and relationship of Leucosolenia botryoides, Bowerbank. Ann Mag Nat Hist 1:133–142

    Google Scholar 

  • Jay JM, Pohley WJ (1981) Dermosporidium penneri sp. n. from the skin of the American toad, Bufo americanus (Amphibia: Bufonidae). J Parasitology 67:108–110

    Article  Google Scholar 

  • Jiménez-Guri E, Philippe H, Okamura B, Holland PWH (2007) Buddenbrockia is a cnidarian worm. Science 317:116–118

    Article  PubMed  CAS  Google Scholar 

  • Jones MD, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature (in press)

    Google Scholar 

  • Karpov SA and Leadbeater BSC (1997) Cytoskeleton structure and composition in choanoflagellates. Europ J Protistol 33:323–334

    Article  Google Scholar 

  • Keeling PJ (2003) Congruent evidence from α-tubulin and β-tubulin gene phylogenies for a zygomycete origin of microsporidia. Fungal Genet Biol 38:298–309

    Article  PubMed  CAS  Google Scholar 

  • Kent SW (1880) A manual of the Infusoria, vols 1–3 (1880–1882). Kent, London

    Google Scholar 

  • Kim E, Simpson AGB, Graham LE (2006) Evolutionary relationships of Apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes. Mol Biol Evol 23:2455–2466

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Harada K, Hara K, Tamaki A (2002) Enzymatic approach to fungal association with arthropod guts: a case study for the crustacean host, Nihonotrypaea harmandi, and its foregut fungus, Enteromyces callianassae. Mar Ecol 23:157–183

    Article  CAS  Google Scholar 

  • King N (2005) Choanoflagellates. Curr Biol 15:R113–R114

    Article  PubMed  CAS  Google Scholar 

  • King N and Carroll SB (2001) A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc Natl Acad Sci USA 98:15032–15037

    Article  PubMed  CAS  Google Scholar 

  • King N, Hittinger CT, Carroll SB (2003) Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301:361–363

    Article  PubMed  CAS  Google Scholar 

  • King N, Westbrook MJ, Young SL, Kuo A, Abedin M, et al. (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788

    Article  PubMed  CAS  Google Scholar 

  • Kodner RB, Summons RE, Pearson A, King N, Knoll AH (2008) Sterols in a unicellular relative of the metazoans. Proc Natl Acad Sci USA 105:9897–9902

    Article  PubMed  CAS  Google Scholar 

  • Kruger W (1894) Kurze Charakteristik einiget niederer Organismen in Saftlusse der Laubbaume. Hedwigia 33:241–266

    Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworths & Bisbys dictionary of the fungi, 9th edn, Wallingford: CABI publishing

    Google Scholar 

  • Lang BF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 33:351–397

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, O’Kelly C, Nerad T, Gray MW, Burger G (2002) The closest unicellular relatives of Animals. Current Biology 12:1773–1778

    Article  PubMed  CAS  Google Scholar 

  • Lara E, Moreira D, López-García P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist 161:116–121

    Article  PubMed  CAS  Google Scholar 

  • Lavrov DV, Forget L, Kelly M, Lang BF (2005) Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Mol Biol Evol 22:1231–1239

    Article  PubMed  CAS  Google Scholar 

  • Leadbeater BSC (1979) Developmental studies in the loricate choanoflagellate Stephanoeca diplocostata. II. Cell division and lorica assembly. Protoplasma 98:311–328

    Google Scholar 

  • Leadbeater BSC, Hassan R, Nelson M, Carr M, Baldauf SL (2008) A new genus, Helgoeca gen. nov., for a nudiform choanoflagellate. Europ J Protistol 44:227–237

    Article  Google Scholar 

  • Leadbeater BSC, Morton C (1974) A microscopical study of a marine species of Codosiga James-Clark (Choanoflagellata) with special reference to the ingestion of bacteria. Biol J Linn Soc 6:337–347

    Article  Google Scholar 

  • Leadbeater BSC, Yu Q, Kent J, Stekel DJ (2009) Three-dimensional images of choanoflagellate loricae. Proc. R. Soc. B 276:3–11

    Article  PubMed  Google Scholar 

  • Lee J, Young JPW (2009) The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. New Phytol. 183:200–211

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Corradi N, Byrnes III EJ, Torres-Martinez S, Dietrich FS, Keeling PJ, Heitman J (2008) Microsporidia evolved from ancestral sexual fungi. Current Biology 18:1675–1679

    Article  PubMed  CAS  Google Scholar 

  • Lepère C, Domaizon I, Debroas D (2008) Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl Environ Microbiol 74:2940–2949

    Article  PubMed  CAS  Google Scholar 

  • Lichtwardt RW (1986) The Trichomycetes: Fungal associates of arthropods. Springer-Verlag, New York pp 343

    Google Scholar 

  • Liu YJ, Hodson MC, Hall BD (2006) Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of Kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evolutionary Biology 6:74

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Leigh JW, Brinkmann H, Cushion MT, Rodriguez-Ezpeleta N, Philippe H, Lang BF (2009) Phylogenomic analyses support the monophyly of Taphrinomycotina, including Schizosaccharomyces fission yeasts. Mol Biol Evol 26:27–34

    Article  PubMed  CAS  Google Scholar 

  • Loytynoja A, Milikovitch MC (2001) Molecular phylogenetic analyses of the mitochondrial ADP–ATP carriers: the Plantae/Fungi/Metazoa trichotomy revisited. Proc Natl Acad Sci USA 98:10202–10207

    Article  PubMed  CAS  Google Scholar 

  • Maldonado M (2004) Choanoflagellates, choanocytes, and animal multicellularity. Invert Bio 123:1–22

    Article  Google Scholar 

  • Mallatt JM, Garey JR, Schultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phy Evol 31:178–191

    Article  CAS  Google Scholar 

  • Manning G, Young SL, Miller WT, Zhai Y (2008) The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc Natl Acad Sci USA 105:9674–9679

    Article  PubMed  CAS  Google Scholar 

  • Matus DQ, Pang K, Marlow H, Dunn CW, Thomsen GH, Martindale MQ (2006) Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci USA 103:11195–11200

    Article  PubMed  CAS  Google Scholar 

  • Medina M, Collins AG, Silberman JD, Sogin ML (2001) Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci USA 98:9707–9712

    Article  PubMed  CAS  Google Scholar 

  • Medina M, Collins AG, Taylor JW, Valentine JW, Lipps JH, Amaral-Zettler L, Sogin ML (2003) Phylogeny of Opisthokonta and the evolution of multicellularity and complexity in Fungi and Metazoa. Int J Astro 2:203–211

    Article  Google Scholar 

  • Mendoza L, Ajello L, Taylor JW (2001) The taxonomic status of Lacazia loboi and Rhinosporidium seeberi has been finally resolved with the use of molecular tools. Rev Iberoam Micol 18:95–98

    PubMed  CAS  Google Scholar 

  • Mendoza L, Taylor JW, Ajello L (2002) The Class Mesomycetozoa: a heterogeneous group of microorganisms at the animal–fungal boundary. Annu Rev Microbiol 56:315–344

    Article  PubMed  CAS  Google Scholar 

  • Minge MA, Silberman JD, Orr RJS, Cavalier-Smith T, Shalchian-Tabrizi K, Burki F, Skjæveland Å, Jakobsen KS (2009) Evolutionary position of breviate amoebae and the primary eukaryote divergence. Proc R Soc B 276:597–604

    Article  PubMed  CAS  Google Scholar 

  • Monteiro AS, Okamura B, Holland PWH (2002) Orphan worm finds a home: Buddenbrockia is a myxozoan. Mol Biol Evol 19:968–971

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, von der Heyden S, Bass D, López-García P, Chao EEY, Cavalier-Smith T (2007) Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol Phylogenet Evol 44:255–266

    Article  PubMed  CAS  Google Scholar 

  • Norris RE (1965) Neustonic marine Craspedomonadales (Choanoflagellata) from Washington and California. J Protozool 12:589–612

    Google Scholar 

  • Ordás MC, Figueras A (1998) In vitro culture of Perkinsus atlanticus, a parasite of the carpet shell clam Ruditapes decussates. Dis Aquat Org 33:129–136

    Article  Google Scholar 

  • Owczarzak A, Stibbs HH, Bayne CJ (1980) The destruction of Schistosoma mansoni mother sporocysts in vitro by amoebae isolated from Biomphalaria glabrata: an ultrastructural study. J Inver Path 35:26–33

    Article  CAS  Google Scholar 

  • Page FC (1987) The classification of ‘naked’ amoebae (Phylum Rhizopoda). Arch Protistenk 133:199–217

    Article  Google Scholar 

  • Patron NJ, Inagaki Y, Keeling PJ (2007) Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Current Biology 17:887–891

    Article  PubMed  CAS  Google Scholar 

  • Patterson DJ (1984) The genus Nuclearia (Sarcodina, Filosea): species composition and characteristics of the taxa. Arch Protistenk 128:127–139

    Article  Google Scholar 

  • Patterson DJ (1999) The diversity of eukaryotes. Am Nat 154(Suppl):S86–S124.

    Google Scholar 

  • Patterson DJ, Nygaard K, Steinberg G, Turley C (1993) Heterotrophic flagellates and other protists associated with organic detritus throughout the water column in the mid North Atlantic. J Mar Biol Assoc UK 73:67–95

    Article  Google Scholar 

  • Perry RP, Cheng TY, Freed JJ, Greenberg JR, Kelley DE, Tartof KD (1970) Evolution of the transcription unit of ribosomal RNA. Proc Natl Acad Sci USA 65:609–616

    Article  PubMed  CAS  Google Scholar 

  • Pettitt ME, Orme BAA, Blake JR, Leadbeater BSC (2002) The hydrodynamics of filter feeding in choanoflagellates. Europ J Protistol 38:313–332

    Article  Google Scholar 

  • Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Quéinnec E, Da Silva C, Wincker P, Le Guyader H, Leys S, Jackson DJ, Schreiber F, Erpenbeck D, Morgenstern B, Wörheide G, Manuel M (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19:706–712

    Article  PubMed  CAS  Google Scholar 

  • Philippe H, Snell EA, Bapteste E, Lopez P, Holland PWH, Casane D (2004) Phylogenomics of eukaryotes: Impact of missing data on large alignments. Mol Biol Evol 21:1740–1752

    Article  PubMed  CAS  Google Scholar 

  • Philippe H, Telford MJ (2006) Large-scale sequencing and the new animal phylogeny. Trends in Ecology and Evolution 21:614–620

    Article  PubMed  Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 5:153–164

    Article  Google Scholar 

  • Powell MJ (1984) Fine structure of the unwalled thallus of Rozella polyphagi in its host Polyphagus euglenea. Mycologia 76:1039–1048

    Article  Google Scholar 

  • Ragan MA, Goggins CL, Cawthorn RJ, Cerenius L, Jamienson AVC, et al. (1998) A novel clade of protistan parasites near the animal–fungal divergence. Proc Natl Acad Sci USA 93:11907–11912

    Article  Google Scholar 

  • Raghu-Kumar S, Chandramohan D, Ramaiah N (1987) Contribution of the thraustochytrid Corallochytrium limacisporum Raghu-Kumar to microbial biomass in coral reef lagoons. Ind J Marine Sciences 16:122–125

    Google Scholar 

  • Rand TG (1994) An unusual form of Ichthyophonus hoferi from yellowtail flounder Limanda Ferruginea from the Nova Scotia shelf. Dis Aquat Org 18:21–28

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Inagaki Y, Davis LA, Sperstad S, Landfald B, Roger AJ (2004) Capsaspora owczarzaki is an independent opisthokont lineage. Curr Biol 14:R946

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Lane CE, Archibald JM, Roger AJ (2006) Insights into the evolutionary origin and genome architecture of the unicellular Opisthokonts Capsaspora owczarzaki and Sphaeroforma arctica. J Eukaryot Microbiol 53:379–384

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Burger G, Holland PWH, King N, Lang BF, Roger AJ, Gray MW (2007) The origins of multicellularity: a multi-taxon genome initiative. Trends Genet 23:113–118

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang BF (2008) A phylogenomic investigation into the origin of Metazoa. Mol Biol Evol 25:664–672

    Article  PubMed  CAS  Google Scholar 

  • Sáez AG, Lozano E, Zaldívar-Riverón A (2009) Evolutionary history of Na,K-ATPases and their osmoregulatory role. Genetica 136:479–490

    Article  PubMed  CAS  Google Scholar 

  • Schierwater B (2005) My favorite animal, Trichoplax adhaerens. Bioessays 27:1294–1302

    Article  PubMed  CAS  Google Scholar 

  • Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T (2008) Multigene phylogeny of Choanozoa and the origin of animals. PLoS One 3:e2098

    Article  PubMed  CAS  Google Scholar 

  • Signorovitch AY, Buss LW, Dellaporta SL (2007) Comparative genomics of large mitochondria in placozoans. PLoS Genetics 3:44–50

    Article  CAS  Google Scholar 

  • Smothers JF, von Dohlen CD, Smith Jr LH, Spall RD (1994) Molecular evidence that the myxozoan protists are metazoans. Science 265:1719–1721

    Article  PubMed  CAS  Google Scholar 

  • Spanggaard B, Skouboe P, Rossen L, Taylor JW (1996) Phylogeneti relationships of the intercellular fish pathogen Ichthyophonus hoferi, and fungi, choanoflagellates and the rosette agent. Mar Biol 126:109–115

    Article  CAS  Google Scholar 

  • Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, et al. (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463

    Article  PubMed  CAS  Google Scholar 

  • Stechmann A, Cavalier-Smith T (2003) Phylogenetic analysis of eukaryotes using heat–shock protein Hsp90. J Mol Evol 57:408–419

    Article  PubMed  CAS  Google Scholar 

  • Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origins of animals and fungi. Mol Biol Evol 23:93–106

    Article  PubMed  CAS  Google Scholar 

  • Stibbs HH, Owczarzak A, Bayne CJ, DeWan P (1979) Schistosome sporocyst-killing amoebae isolated from Biomphalaria glabrata. J Invert Pathol 33:159–170

    Article  CAS  Google Scholar 

  • Sumathi JC, Raghukumar S, Kasbekar DP, Raghukumar C (2006) Molecular evidence of fungal signatures in the marine protist Corallochytrium limacisporum and its implications in the evolution of animals and fungi. Protist 157:363–376

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y, Watanabe MM, Sugiyama J (2005) Evolutionary relationships among basal fungi (Chytridiomycota and Zygomycota): Insights from molecular phylogenetics. J Gen Appl Microbiol 51:267–276

    Article  PubMed  CAS  Google Scholar 

  • Takashita K Tsuchiya M, Kawato M, Oguri K, Kitazato H, Maruyama T (2007) Genetic diversity of microbial eukaryotes in anoxic sediment of the saline meromictic Lake Namako-ike (Japan): on the detection of anaerobic or anoxic-tolerant lineages of eukaryotes. Protist 158:51–64

    Article  CAS  Google Scholar 

  • Tehler A (1988) A cladistic outline of the Eumycota. Cladistics 4:227–277

    Article  Google Scholar 

  • Tehler A, Farris JS, Lipscomb DL and Källersjö M (2000) Phylogenetic analyses of the fungi based on large rDNA data sets. Mycologia 92:459–474

    Article  Google Scholar 

  • Telford MJ (2006) Animal phylogeny. Curr Biol 16:R981–R985

    Article  PubMed  CAS  Google Scholar 

  • Trotter MJ, Whisler HC (1965) Chemical composition of the cell wall of Amoebidium parasiticum. Can J Bot 43:869–876

    Article  CAS  Google Scholar 

  • van Etten JL, Lane LC, Meints RH (1991) Viruses and viruslike particles of eukaryotic algae. Microbiol Rev 55:586–620

    PubMed  Google Scholar 

  • van Hannen EJ, Mooij W, van Agterveld MP, Gons HJ, van Laanbroek P (1999) Detritus-dependent development of the microbial community in an experimental system: quality analysis by denaturing gradient gel electrophoresis. Appl Env Micro 65:2478–2484

    Google Scholar 

  • Voigt K, Wöstemeyer J (2001) Phylogeny and origin of 82 zygomycetes from all 54 genera of the Mucorales and Mortierellales based on combined analysis of actin and translation elongation factor EF-1α genes. Gene 270:113–120

    Article  PubMed  CAS  Google Scholar 

  • Voigt O, Collins AG, Buchsbaum Pearse V, Pearse JS, Ender A, Hadrys H, Schierwater B (2004) Placozoa – no longer a phylum of one. Curr Biol 14:R944–R945

    Article  CAS  Google Scholar 

  • Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the Metazoa: an evolutionary link with fungi. Science 260:340–342

    Article  PubMed  CAS  Google Scholar 

  • Wallberg A, Thollesson M, Farris JS, Jondelius U (2004) The phylogenetic position of the comb jellies (Ctenophora) and the importance of taxonomic sampling. Cladistics 20:558–578

    Article  Google Scholar 

  • Wang X, Lavrov DV (2007) Mitochondrial genome of the homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals. Mol Biol Evol 24:363–373

    Article  PubMed  CAS  Google Scholar 

  • White MM, James TY, O’Donnell, Cafaro MJ, Tanabe Y, Sugiyama J (2006) Phylogeny of the Zygomycota based on nuclear ribosomal sequence data. Mycologia 98:872–884

    Article  PubMed  Google Scholar 

  • Woo PC, Zhen H, Cai JJ, Yu J, Lau SK, Wang J, Teng JL, Wong SS, Tse RH, Chen R, Yang H, Liu B, Yuen KY (2003) The mitochondrial genome of the thermal dimorphic fungus Penicillium marneffei is more closely related to those of moulds than yeasts. FEBS Lett 555:469–477

    Article  PubMed  CAS  Google Scholar 

  • Worley AC, Raper KB, Hohl M (1979) Fonticula alba: a new cellular slime mold (Acrasiomycetes). Mycologia 71:746–76

    Article  Google Scholar 

  • Yoshida M, Nakayama T, Inouye I (2009) Nuclearia thermophila sp. nov. (Nucleariidae), a new nucleariid species isolated from Yunoko Lake in Nikko (Japan). Eur J Protistol 45:147–155.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Carr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carr, M., Baldauf, S.L. (2011). 1 The Protistan Origins of Animals and Fungi. In: Pöggeler, S., Wöstemeyer, J. (eds) Evolution of Fungi and Fungal-Like Organisms. The Mycota, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19974-5_1

Download citation

Publish with us

Policies and ethics