Skip to main content

Competing Technologies

  • Chapter
  • First Online:
Thermophotovoltaics

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In general it can be assumed that there exists a potential market for TPV systems anywhere that an electrical power source is required. Hence, in order to identify suitable TPV applications, this chapter reviews other deployed and emerging electricity generating technologies.

In TPV literature, competing technologies discussed have included internal heat engine generators , solar PV systems, electro-chemical cells and direct heat-to-electricity converters. The latter category includes thermoelectric, thermionic and alkali metal thermal to electric converters (AMTECs). The three electro-chemical cell types are primary (battery), secondary (rechargeable battery) or tertiary (fuel cell).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ralph EL, FitzGerald MC (1995) Systems/marketing challenges for TPV. Proceedings of the 1st NREL conference on thermophotovoltaic generation of electricity, Copper Mountain, Colorado, US, 24–28 July 1994. American Institute of Physics, pp 315–321

    Google Scholar 

  2. Nelson R (2003) TPV Systems and state-of-the-art development. Proceedings of the 5th conference on thermophotovoltaic generation of electricity, Rome, 16–19 Sept 2002. American Institute of Physics, 3–17

    Google Scholar 

  3. Yamaguchi H, Yamaguchi M (1999) Thermophotovoltaic potential applications for civilian and industrial use in Japan. Proceedings of the 4th NREL Conference on thermophotovoltaic generation of electricity, denver, Colorado, 11–14 Oct 1998. American Institute of Physics, 17–29

    Google Scholar 

  4. Yugami H, Sasa H, Yamaguchi M (2003) Thermophotovoltaic systems for civilian and industrial applications in Japan. Semicond Sci Technol 18:239–246

    Article  Google Scholar 

  5. Rose MF (1996) Competing technologies for thermophotovoltaic. Proceedings of the 2nd NREL Conference on thermophotovoltaic generation of electricity, Colorado Springs, 16–20 July 1995. American Institute of Physics, pp 213–220

    Google Scholar 

  6. Johnson S (1997) TPV market review. Proceedings of the 3rd NREL Conference on thermophotovoltaic generation of electricity, Denver, Colorado, 18–21 May 1997. American Institute of Physics, pp xxv–xxvii

    Google Scholar 

  7. Kruger JS (1997) Review of a workshop on thermophotovoltaics organized for the army research office. Proceedings of the 3rd NREL conference on thermophotovoltaic generation of electricity, Denver, Colorado, 18–21 May 1997. American Institute of Physics, pp 23–30

    Google Scholar 

  8. Decher R (1997) Direct energy conversion fundamentals of electric power production. Oxford University Press, Oxford

    Google Scholar 

  9. Angrist SW (1976) Direct energy conversion, 3rd edn. Allyn and Bacon, Boston MA

    Google Scholar 

  10. Dryden IGC (1975) The efficient use of energy. IPC Science and Technology Press, London

    Google Scholar 

  11. Energy sources and systems (1997) in energy-efficient technologies for the dismounted soldier, Chap 3. National Academy Press, Washington, DC [online] Available at: http://www.nap.edu/openbook.php?isbn=0309059348

    Google Scholar 

  12. Milton BE (1995) Thermodynamics combustion and engines. Stanley Thornes Publishing Ltd., Cheltenham

    Google Scholar 

  13. Theiss TJ, Conklin JC, Thomas JF, Armstrong TR (2000) Comparison of prime movers suitable for USMC expeditionary power sources, Report, Oak Ridge National Laboratory, US, ORNL/TM-2000/116

    Google Scholar 

  14. Honda generators (2010) [Online] Available at: http://www.honda-uk.com/. Accessed 5 May 2010

  15. Kusko A (1989) Emergency standby power systems. McGraw-Hill, New York

    Google Scholar 

  16. Product capstone C30 (2010), capstone turbine corporation, [Online] Available at: http://www.microturbine.com/ (Accessed: 5 May 2010), Chatsworth, US

  17. Peirs J, Reynaerts D, Verplaetsen F (2004) A microturbine for electric power generation. Sens Actuators A 113:86–93

    Article  Google Scholar 

  18. (2010) Product WhisperGen (grid connected), [Online] Available at: http://www.whispergen.com/ (Accessed: 5 May 2010), WhisperGen Limited, New Zealand

  19. (2010) Stirling V161 CHP, [Online] Available at: http://www.cleanergyindustries.com/ (Accessed: 5 May 2010) Cleanergy AB, Sweden

  20. (2010) PowerUnit™, [Online] Available at: http://www.stirlingbiopower.com/ (Accessed: 5 May 2010) Stirling Biopower, US

  21. Coutts TJ (2001) Thermophotovoltaic generation of electricity. In: Archer MD, Hill R (eds) Clean electricity from photovoltaics, Chap 11, vol 1., Series on photoconversion of solar energy, Imperial College Press, London

    Google Scholar 

  22. Deakin RI (2000) Batteries and fuel cells. In: Warne DF (ed) Newnes electrical engineers handbook, Chap. 12. Newnes, Oxford

    Google Scholar 

  23. Linden D (1995) Selection and application of batteries. In: Linden D (ed) Handbook of batteries, Chap. 6, 2nd edn. McGraw-Hill, New York, pp 6.1–6.15

    Google Scholar 

  24. Srinivasan S, Dave BB, Murugesamoorthi KA, Parthasarathy A, Appleby AJ (1994) Overview of fuel cell technology. In: Blomen LJMJ, Mugerwa MN (eds) Fuel Cell Systems, Chap 2. Plenum Press, New York, pp 37–72

    Google Scholar 

  25. Williams MC (2000) Fuel cell handbook, 5th edn. U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, DE-AM26-99FT40575

    Google Scholar 

  26. Acres GJK (2001) Recent advances in fuel cell technology and its applications. J Power Sources 100:60–66

    Article  Google Scholar 

  27. Song C (2002) Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century. Catal Today 77:17–49

    Article  Google Scholar 

  28. The online fuel cell information resource (2010) [Online] Available at: http://www.fuelcells.org/. Accessed 5 May 2010

  29. Prater KB (1996) Solid polymer fuel cells for transport and stationary applications. J Power Sources 61:105–109

    Article  Google Scholar 

  30. Pinkerton FE, Wicke BG (2004) Bottling the hydrogen genie, the industrial physicist, American Institute of Physics, February/March, pp 20–23

    Google Scholar 

  31. Rowe DM, (1994) Chap. 10: Thermoelectric generation. In: Profiting from low-grade heat: Thermodynamic cycles for low-temperature heat sources. Crook AW (ed) Institution of Electrical Engineers

    Google Scholar 

  32. Cobble MH (1995) Calculation of generator performance. In: Rowe DM (ed) CRC Handbook of thermoelectrics, Chap 39. CRC Press, Boca Raton

    Google Scholar 

  33. Riffat SB, Ma Xiaoli (2003) Thermoelectrics—a review of present and potential applications. Appl Therm Eng 23:913–935

    Article  Google Scholar 

  34. Lambrecht A, Böttner H, Nurnus J (2004) Thermoelectric energy conversion - overview of a TPV alternative. Proceedings of the 6th International conference on thermophotovoltaic generation of electricity, Freiburg, Germany, 14–16 June 2004. American Institute of Physics, pp 24–32

    Google Scholar 

  35. Rowe DM (2006) General principles and basic considerations. In: Rowe DM (ed) Thermoelectrics handbook: Macro to nano, Chap 1. CRC Press, Boca Raton

    Google Scholar 

  36. (2010) Thermoelectric generator. [Online] Available at: http://www.globalte.com/ (Accessed: 8 May 2010) Global Thermoelectric, Canada

  37. Hall WC (1995) Terrestrial applications of thermoelectric generators. In: Rowe DM (ed) CRC Handbook of Thermoelectrics, Chap 40. CRC Press, Boca Raton

    Google Scholar 

  38. Vining CB (1994) Thermoelectric technology of the future. Presentation, defense science research council workshop, La Jolla, California, 21. July [Online] Available: http://www.poweredbythermolife.com/pdf/Thermoelectric_Technology_of_the_Future.pdf. Accessed 28 April 2010

  39. Rowe DM, Min Gao (1998) Evaluation of thermoelectric modules for power generation. J Power Sources 73:193–198

    Article  Google Scholar 

  40. Advanced thermoelectric materials for efficient waste heat recovery in process industries (2004) Industrial Technologies Program, U.S. Department of Energy [Online] Available at: http://www.eere.energy.gov/. Accessed 28 April 2010

  41. Matsuura K, Rowe DM (1995) Low-temperature heat conversion. In: Rowe DM (ed) CRC Handbook of thermoelectrics, Chap 44. CRC Press, Boca Raton

    Google Scholar 

  42. Lodhi MAK, Vijayaraghavan P, Daloglu A (2001) An overview of advanced space/terrestrial power generation device: AMTEC. J Power Sources 103(1):25–33

    Article  Google Scholar 

  43. El-Genk MS, Tournier J-MP (2004) AMTEC/TE static converters for high energy utilization, small nuclear power plants. Eng Convers Manag 45:511–535

    Article  Google Scholar 

  44. Macauley MK, Davis JF (2001) An economic assessment of space solar power as a source of electricity for space-based activities. Discussion Paper, Resources for the Future, Washington, US [Online] Available at: http://www.rff.org/. Accessed 28 April 2010

  45. Oman H (1999) AMTEC cells challenge energy converters. IEEE Aerosp Electron Syst Mag 14:43–46

    Article  Google Scholar 

  46. (2001) Overview of the technology, in Thermionics Quo Vadis, An Assessment of the DTRAs Advanced Thermionics Research and Development Program, Chap 3. National Academy Press, pp 15–32, [Online] Available at: http://books.nap.edu/. Accessed 8 May 2010

  47. Massie LD (1991) Future trends in space power technology. IEEE Aerosp Electron Syst Mag 6(11):8–13

    Article  Google Scholar 

  48. Hagelstein PL, Kucherov Y (2002) Enhanced figure of merit in thermal to electrical energy conversion using diode structures. Appl Phys Lett 81:559–561

    Article  Google Scholar 

  49. Davies PA, Luque A (1994) Solar thermophotovoltaics: Brief review and a new look. Sol Eng Mater Sol Cells 33:11–22

    Article  Google Scholar 

  50. Woolf LD (1987) Solar photothermophotovoltaic energy conversion, Proceedings of the 19th IEEE Photovoltaic Specialists Conference, IEEE, pp 427–432

    Google Scholar 

  51. Carlson RS, Fraas LM (2007) Adapting TPV for use in a standard home heating furnace. Proceedings of the 7th world conference on thermophotovoltaic generation of electricity, Madrid, 25–27 Sept 2006 American Institute of Physics, pp 273–279

    Google Scholar 

  52. Fraas L, Groeneveld M, Magendanz G, Custard P (1999) A single TPV cell power density and efficiency measurement technique. Proceedings of the 4th NREL Conference on thermophotovoltaic generation of electricity, Denver, Colorado, 11–14 Oct 1998. American Institute of Physics, pp 312–316

    Google Scholar 

  53. Fraas LM, Avery JE, Nakamura T (2002) Electricity from concentrated solar IR in solar lighting applications. Proceedings of the 29th IEEE photovoltaic specialists conference, New Orleans, 19–24 May 2002. IEEE, pp 963–966

    Google Scholar 

  54. Volz W (2001) Entwicklung und aufbau eines thermophotovoltaischen energiewandlers (in German), Doctoral thesis, Universität Gesamthochschule Kassel, Institut für Solare Energieversorgungstechnik (ISET)

    Google Scholar 

  55. Horne E (2002) Hybrid thermophotovoltaic power systems, EDTEK, Inc., US, Consultant Report, P500-02-048F

    Google Scholar 

  56. Wernsman B, Siergiej RR, Link SD, Mahorter RG, Palmisiano MN, Wehrer RJ, Schultz RW, Schmuck GP, Messham RL, Murray S, Murray CS, Newman F, Taylor D, DePoy DM, Rahmlow T (2004) Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control. Trans Electron Devices 51(3):512–515

    Article  Google Scholar 

  57. Wanlass MW, Ahrenkiel SP, Ahrenkiel RK, Carapella JJ, Wehrer RJ, Wernsman B (2004) Recent advances in low-bandgap, InP-Based GaInAs/InAsP materials and devices for thermophotovoltaic (TPV) energy conversion, Proceedings of the 6th International Conference on thermophotovoltaic generation of electricity, Freiburg, Germany, 14–16 June 2004. American Institute of Physics, pp 427–435

    Google Scholar 

  58. Dashiell MW, Beausang JF, Nichols G, Depoy DM, Danielson LR, Ehsani H, Rahner KD, Azarkevich J, Talamo P, Brown E, Burger S, Fourspring P, Topper W, Baldasaro PF, Wang CA, Huang R, Connors M, Turner G, Shellenbarger Z, Taylor G, Jizhong Li, Martinelli R, Donetski D, Anikeev S, Belenky G, Luryi S, Taylor DR, Hazel J (2004) 0.52 eV Quaternary InGaAsSb Thermophotovoltaic diode technology. Proceedings of the 6th international conference on thermophotovoltaic generation of electricity, Freiburg, Germany, 14–16 June 2004. American Institute of Physics, pp 404–414

    Google Scholar 

  59. Shellenbarger ZA, Taylor GC, Martinelli RU, Carpinelli JM (2004) High performance InGaAsSb TPV cells. Proceedings of the 6th international conference on thermophotovoltaic generation of electricity, Freiburg, Germany, 14–16 June 2004. American Institute of Physics, pp 345–352

    Google Scholar 

  60. Sale Items (2010), JX-Crystals Inc., US [Online] Available at: http://www.jxcrystals.com/. Accessed 28 April 2010

  61. Fraas LM, Avery JE, Huang HX (2003) Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells. Semicond Sci Technol 18:247–253

    Article  Google Scholar 

  62. International photovoltaic database (2009), European Comparison [Online] Available at: http://www.sonnenertrag.eu/. Accessed 8 May 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bauer .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bauer, T. (2011). Competing Technologies. In: Thermophotovoltaics. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19965-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19965-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19964-6

  • Online ISBN: 978-3-642-19965-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics