Advertisement

Experimental Results on Electron Acceleration

  • Karl SchmidEmail author
Chapter
  • 593 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Several possible sources for the strong fluctuations of the electron beam properties are worth considering: first, the above results were obtained in single-shot mode or at low repetition rate, therefore, a slow drift in laser parameters would show up as shot-to-shot fluctuation in the electron beam. To exclude this, the experimental diagnostic tools—most importantly the electron spectrometer—were improved to allow data acquisition at the full 10 Hz repetition rate of LWS-10. The use of optimized microscopic de Laval nozzles produced here a small enough gas load on the vacuum pumps, so that sustained operation at 10 Hz was possible. Since the cooled 16-bit camera used for recording the signal of the scintillating fibres could not be used at 10 Hz, scintillating Lanex screens were introduced into the imaging plane of the electron spectrometer. These then were imaged to fast 12-bit CCD cameras allowing 10 Hz operation as well as simultaneous observation of electron energy and transversal beam profile.

References

  1. 1.
    Yamazaki, A., Kotaki, H., Daito, I., Kando, M., Bulanov, S.V., Esirkepov, T.Zh., Kondo, S., Kanazawa, S., Homma, T., Nakajima, K., Oishi, Y., Nayuki, T., Fujii, T., Nemoto, K.: Quasi-monoenergetic electron beam generation during laser pulse interaction with very low density plasmas. Phys. Plasmas 12(9), 093101 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Masuda, S., Miura, E., Koyama, K., Kato, S., Adachi, M., Watanabe, T., Torii, K., Tanimoto, M.: Energy scaling of monoenergetic electron beams generated by the laser-driven plasma based accelerator. Phys. Plasmas 14(2), 023103 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Hsieh, C.-T., Huang, C.-M., Chang, C.-L., Ho, Y.-C., Chen, Y.-S., Lin, J.-Y., Wang, J., Chen, S.-Y.: Tomography of injection and acceleration of monoenergetic electrons in a laser-wakefield accelerator. Phys. Rev. Lett. 96(9), 095001 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Hidding, B., Amthor, K.-U., Liesfeld, B., Schwoerer, H., Karsch, S., Geissler, M., Veisz, L., Schmid, K., Gallacher, J.G., Jamison, S.P., Jaroszynski, D., Pretzler, G., Sauerbrey, R.: Generation of quasimonoenergetic electron bunches with 80-fs laser pulses. Phys. Rev. Lett. 96(10), 105004 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-ter Vehn, J., Pretzler, G., Thirolf, P., Habs, D., Witte, K.J.: Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83(23), 4772–4775 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Gordienko, S., Gordienko, S.: Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 12, 043109 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Oguchi, A., Zhidkov, A., Takano, K., Hotta, E., Nemoto, K., Nakajima, K.: Multiple self-injection in the acceleration of monoenergetic electrons by a laser wake field. Phys. Plasmas 15(4), 043102 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations