Laser Wakefield Electron Acceleration pp 83-107 | Cite as
Electron Acceleration by Few-Cycle Laser Pulses: Theory and Simulation
Chapter
First Online:
- 629 Downloads
Abstract
In the following, the plasma is treated as an electron fluid, the ions serve only as a fixed neutralizing background. This approximation is justified for all processes on timescales much shorter than the inverse ion–plasma frequency which will be derived below. In order to derive the dispersion relations of a cold collisionless plasma we start from the Maxwell equations
Keywords
Laser Pulse Plasma Wave Wave Breaking Electron Bunch Ponderomotive Force
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Batani, D. et al. (eds.): Atoms, Solids, and Plasmas in Super-Intense Laser Fields. Kluwer, Dordrecht (2001)Google Scholar
- 2.Jackson, J.D.: Classical Electrodynamics, 3rd edn. Walter de Gruyter, Berlin (2002)Google Scholar
- 3.Moore, C.I., Knauer, J.P., Meyerhofer, D.D.: Observation of the transition from thomson to compton scattering in multiphoton interactions with low-energy electrons. Phys. Rev. Lett. 74(13), 2439–2442 (1995)ADSCrossRefGoogle Scholar
- 4.Woodward, P.M.: A method of calculationg the field over a plane. J. Inst. Electr. Eng. 93, 1554–1558 (1947)Google Scholar
- 5.Lawson, J.D.: Lasers and accelerators. IEEE Trans. Nucl. Sci. 26(3), 4217–4219 (1979)MathSciNetADSCrossRefGoogle Scholar
- 6.Esarey, E., Sprangle, P., Krall, J.: Laser acceleration of electrons in vacuum. Phys. Rev. E. 52(5), 5443–5453 (1995)ADSCrossRefGoogle Scholar
- 7.Salamin, Y.I., Mocken, G.R., Keitel, C.H.: Electron scattering and acceleration by a tightly focused laser beam. Phys. Rev. ST Accel. Beams 5(10), 101–301 Oct(2002)CrossRefGoogle Scholar
- 8.Bauer, D., Mulser, P., Steeb, W.H.: Relativistic ponderomotive force, uphill acceleration, and transition to chaos. Phys. Rev. Lett. 75(25), 4622–4625 (1995)ADSCrossRefGoogle Scholar
- 9.Startsev, E.A., McKinstrie, C.J.: Multiple scale derivation of the relativistic ponderomotive force. Phys. Rev. E 55(6), 7527 (1997)ADSCrossRefGoogle Scholar
- 10.Decoster, A.: Nonlinear travelling waves in a homogeneous cold collisionless plasma. Phys. Rep. 45(5), 285 (1978)ADSCrossRefGoogle Scholar
- 11.Gibbon, P.: Short Pulse Laser Interactions with Matter. Imperial College Press, London (2005)zbMATHGoogle Scholar
- 12.Siegman, A.E.: Lasers. 3rd edn. University Science Books (1986)Google Scholar
- 13.Litvak, A.G.: Finite-amplitude wave beams in a magnetoactive plasma. Sov. Phys. JETP 30, 344 (1970)ADSGoogle Scholar
- 14.Max, C.E., Arons, J., Langdon, A.B.: Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33(4), 209–212 (1974)ADSCrossRefGoogle Scholar
- 15.Sprangle, P., Esarey, E., Ting, A., Joyce, G.: Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53(22), 2146–2148 (1988)ADSCrossRefGoogle Scholar
- 16.Sun, G.-Z., Ott, E., Lee, Y.C., Guzdar, P.: Self-focusing of short intense pulses in plasmas. Phys. Fluids 30(2), 526–532 (1987)ADSCrossRefGoogle Scholar
- 17.Borisov, A.B., Borovskiy, A.V., Korobkin, V.V., Prokhorov, A.M., Rhodes, C.K., Shiryaev, O.B.: Stabilization of relativistic self-focusing of intense subpicosecond ultraviolet pulses in plasmas. Phys. Rev. Lett. 65(14), 1753–1756 (1990)ADSCrossRefGoogle Scholar
- 18.Gibbon, P., Monot, P., Auguste, T., Mainfray, G.: Measurable signatures of relativistic self-focusing in underdense plasmas. Phys. Plasmas 2(4), 1305–1310 (1995)ADSCrossRefGoogle Scholar
- 19.Pukhov, A., Meyer-ter Vehn, J.: Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76(21), 3975–3978 (1996)ADSCrossRefGoogle Scholar
- 20.Tzeng, K.-C., Mori, W.B., Decker, C.D.: Anomalous absorption and scattering of short-pulse high-intensity lasers in underdense plasmas. Phys. Rev. Lett. 76(18), 3332–3335 (1996)ADSCrossRefGoogle Scholar
- 21.Tzeng, K.-C., Mori, W.B.: Suppression of electron ponderomotive blowout and relativistic self-focusing by the occurrence of raman scattering and plasma heating. Phys. Rev. Lett. 81(1), 104–107 (1998)ADSCrossRefGoogle Scholar
- 22.Oliveirae Silva, L., Mendonça, J.T.: Kinetic theory of photon acceleration: Time-dependent spectral evolution of ultrashort laser pulses. Phys. Rev. E 57(3), 3423–3431 (1998)ADSCrossRefGoogle Scholar
- 23.Sheng, Z.M., Meyer ter Vehn, J.: Relativistic wave breaking in warm plasmas. Phys. Plasmas 4(2), 493–495 (1997)ADSCrossRefGoogle Scholar
- 24.Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F., Malka, V.: A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541 (2004)ADSCrossRefGoogle Scholar
- 25.Geddes, C.G.R. et al.: High quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538 (2004)ADSCrossRefGoogle Scholar
- 26.Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R., Krushelnick, K.: Monoenergetic beams of relativistic electrons from intense laser plasma interactions. Nature 431, 535 (2004)ADSCrossRefGoogle Scholar
- 27.Pukhov, A., Meyer-Ter-Vehn, J.: Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355 (2002)ADSCrossRefGoogle Scholar
- 28.Lu, W., Huang, C., Zhou, M., Mori, W.B., Katsouleas, T.: Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96(16), 165002 (2006)ADSCrossRefGoogle Scholar
- 29.Tsung, F.S., Lu, W., Tzoufras, M., Mori, W.B., Joshi, C., Vieira, J.M., Silva, L.O., Fonseca, R.A.: Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25 tw lasers. Phys. Plasmas 13(5), 056708 (2006)ADSCrossRefGoogle Scholar
- 30.Gordienko, S., Pukhov, A.: Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 12, 043109 (2005)ADSCrossRefGoogle Scholar
- 31.Pukhov, A., Gordienko, S.: Bubble regime of wake field acceleration: similarity theory and optimal scalings. Phil. Trans. R. Soc. A 364, 623 (2006)ADSCrossRefGoogle Scholar
- 32.Lu, W., Tzoufras, M., Joshi, C., Tsung, F.S., Mori, W.B., Vieira, J., Fonseca, R.A., Silva, L.O.: Generating multi-gev electron bunches using single stage laser wakefield acceleration in a 3d nonlinear regime. Phys. Rev. ST Accel. Beams 10(6), 061301 (2007)ADSCrossRefGoogle Scholar
- 33.Geissler, M., Schreiber, J., Meyer-Ter-Vehn, J.: Bubble acceleration of electrons with few-cycle laser pulses. New J. Phys. 8, 186 (2006)ADSCrossRefGoogle Scholar
- 34.Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-terVehn, J, Pretzler, G., Thirolf, P., Habs, D., Witte, K.J.: Multi-mev. electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83(23), 4772–4775 (1999)ADSCrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2011