Electron Acceleration by Few-Cycle Laser Pulses: Theory and Simulation

  • Karl SchmidEmail author
Part of the Springer Theses book series (Springer Theses)


In the following, the plasma is treated as an electron fluid, the ions serve only as a fixed neutralizing background. This approximation is justified for all processes on timescales much shorter than the inverse ion–plasma frequency which will be derived below. In order to derive the dispersion relations of a cold collisionless plasma we start from the Maxwell equations


Laser Pulse Plasma Wave Wave Breaking Electron Bunch Ponderomotive Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Batani, D. et al. (eds.): Atoms, Solids, and Plasmas in Super-Intense Laser Fields. Kluwer, Dordrecht (2001)Google Scholar
  2. 2.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Walter de Gruyter, Berlin (2002)Google Scholar
  3. 3.
    Moore, C.I., Knauer, J.P., Meyerhofer, D.D.: Observation of the transition from thomson to compton scattering in multiphoton interactions with low-energy electrons. Phys. Rev. Lett. 74(13), 2439–2442 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    Woodward, P.M.: A method of calculationg the field over a plane. J. Inst. Electr. Eng. 93, 1554–1558 (1947)Google Scholar
  5. 5.
    Lawson, J.D.: Lasers and accelerators. IEEE Trans. Nucl. Sci. 26(3), 4217–4219 (1979)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Esarey, E., Sprangle, P., Krall, J.: Laser acceleration of electrons in vacuum. Phys. Rev. E. 52(5), 5443–5453 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    Salamin, Y.I., Mocken, G.R., Keitel, C.H.: Electron scattering and acceleration by a tightly focused laser beam. Phys. Rev. ST Accel. Beams 5(10), 101–301 Oct(2002)CrossRefGoogle Scholar
  8. 8.
    Bauer, D., Mulser, P., Steeb, W.H.: Relativistic ponderomotive force, uphill acceleration, and transition to chaos. Phys. Rev. Lett. 75(25), 4622–4625 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Startsev, E.A., McKinstrie, C.J.: Multiple scale derivation of the relativistic ponderomotive force. Phys. Rev. E 55(6), 7527 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Decoster, A.: Nonlinear travelling waves in a homogeneous cold collisionless plasma. Phys. Rep. 45(5), 285 (1978)ADSCrossRefGoogle Scholar
  11. 11.
    Gibbon, P.: Short Pulse Laser Interactions with Matter. Imperial College Press, London (2005)zbMATHGoogle Scholar
  12. 12.
    Siegman, A.E.: Lasers. 3rd edn. University Science Books (1986)Google Scholar
  13. 13.
    Litvak, A.G.: Finite-amplitude wave beams in a magnetoactive plasma. Sov. Phys. JETP 30, 344 (1970)ADSGoogle Scholar
  14. 14.
    Max, C.E., Arons, J., Langdon, A.B.: Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33(4), 209–212 (1974)ADSCrossRefGoogle Scholar
  15. 15.
    Sprangle, P., Esarey, E., Ting, A., Joyce, G.: Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53(22), 2146–2148 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    Sun, G.-Z., Ott, E., Lee, Y.C., Guzdar, P.: Self-focusing of short intense pulses in plasmas. Phys. Fluids 30(2), 526–532 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    Borisov, A.B., Borovskiy, A.V., Korobkin, V.V., Prokhorov, A.M., Rhodes, C.K., Shiryaev, O.B.: Stabilization of relativistic self-focusing of intense subpicosecond ultraviolet pulses in plasmas. Phys. Rev. Lett. 65(14), 1753–1756 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    Gibbon, P., Monot, P., Auguste, T., Mainfray, G.: Measurable signatures of relativistic self-focusing in underdense plasmas. Phys. Plasmas 2(4), 1305–1310 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    Pukhov, A., Meyer-ter Vehn, J.: Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76(21), 3975–3978 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Tzeng, K.-C., Mori, W.B., Decker, C.D.: Anomalous absorption and scattering of short-pulse high-intensity lasers in underdense plasmas. Phys. Rev. Lett. 76(18), 3332–3335 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Tzeng, K.-C., Mori, W.B.: Suppression of electron ponderomotive blowout and relativistic self-focusing by the occurrence of raman scattering and plasma heating. Phys. Rev. Lett. 81(1), 104–107 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Oliveirae Silva, L., Mendonça, J.T.: Kinetic theory of photon acceleration: Time-dependent spectral evolution of ultrashort laser pulses. Phys. Rev. E 57(3), 3423–3431 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Sheng, Z.M., Meyer ter Vehn, J.: Relativistic wave breaking in warm plasmas. Phys. Plasmas 4(2), 493–495 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F., Malka, V.: A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Geddes, C.G.R. et al.: High quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R., Krushelnick, K.: Monoenergetic beams of relativistic electrons from intense laser plasma interactions. Nature 431, 535 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Pukhov, A., Meyer-Ter-Vehn, J.: Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Lu, W., Huang, C., Zhou, M., Mori, W.B., Katsouleas, T.: Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96(16), 165002 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Tsung, F.S., Lu, W., Tzoufras, M., Mori, W.B., Joshi, C., Vieira, J.M., Silva, L.O., Fonseca, R.A.: Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25 tw lasers. Phys. Plasmas 13(5), 056708 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Gordienko, S., Pukhov, A.: Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 12, 043109 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Pukhov, A., Gordienko, S.: Bubble regime of wake field acceleration: similarity theory and optimal scalings. Phil. Trans. R. Soc. A 364, 623 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    Lu, W., Tzoufras, M., Joshi, C., Tsung, F.S., Mori, W.B., Vieira, J., Fonseca, R.A., Silva, L.O.: Generating multi-gev electron bunches using single stage laser wakefield acceleration in a 3d nonlinear regime. Phys. Rev. ST Accel. Beams 10(6), 061301 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Geissler, M., Schreiber, J., Meyer-Ter-Vehn, J.: Bubble acceleration of electrons with few-cycle laser pulses. New J. Phys. 8, 186 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-terVehn, J, Pretzler, G., Thirolf, P., Habs, D., Witte, K.J.: Multi-mev. electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83(23), 4772–4775 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations