Advertisement

Theory of Compressible Fluid Flow

  • Karl SchmidEmail author
Chapter
  • 620 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

By introducing now the general physical principle of energy conservation one immediately arrives at the first principle law of thermodynamics that essentially states the conservation of energy in its transformation from heat to mechanical energy and vice versa.

Keywords

Mach Number Shock Front Nozzle Exit Supersonic Flow Exit Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Oswatitsch, K.: Gasdynamik. Springer, Heidelberg (1952)Google Scholar
  2. 2.
    Knuth, E.L.: Size correlations for condensation clusters produced in free-jet expansions. J. Chem. Phys. 107(21), 9125–9132 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Knuth, E.: Dimer-formation rate coefficients from measurements of terminal dimer concentrations in free-jet expansions. J. Chem. Phys. 66(8), 3515–3525 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    Hagena, O.F.: Nucleation and growth of clusters in expanding nozzle flows. Surf. Sci. 106, 101 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    Bauer, S.H., Chiu, N-S., Wilcox, C.F. Jr.: Kinetics of condensation in supersonic expansion (ar). J. Chem. Phys. 85(4), 2029–2037 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    Hillenkamp, M., Keinan, S., Even, U.: Condensation limited cooling in supersonic expansions. J. Chem. Phys. 118(19), 8699–8705 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Wiley, (1964)Google Scholar
  8. 8.
    Scheier, P., Märk, T.D.: Isotope enrichment in ne clusters. J. Chem. Phys., 87(9), 5238–5241 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations