• Karl SchmidEmail author
Part of the Springer Theses book series (Springer Theses)


For a century, the on-going development of particle accelerators has been promoting many branches of fundamental and applied research. What began as a tool for nuclear and particle physics, has expanded its use into solid state physics as well as medicine, biology and even history [1]. As these lines are written, the superconducting magnets of the Large Hadron Collider (LHC) [2, 3, 4, 5, 6, 7, 8] at the CERN laboratory are being cooled down to liquid Helium temperature and in a few months’ time, the largest collider ever built will commence operation. With its two counter-propagating proton beams having 7 TeV energy each, it is expected to shed new light on hot topics such as the fundamental origin of mass in form of the famous HIGGS Boson [9], dark energy and dark matter [10], the possible existence of small extra dimensions in space-time [11], and many more. However, looking at the tremendous scale of this project, it is valid to ask the question whether this collider will actually stay the largest collider ever built for many decades to come. With the Superconducting Super Collider (SSC) [12, 13, 14, 15] in Texas, USA, having been cancelled in 1993 due to exploding cost-forecasts that saw the final price tag exceeding 12 billion USD, the only remaining accelerator project which is of comparable magnitude to the LHC is the International Linear Collider (ILC) [16, 17]. The latter will—if realized—consist of two linear accelerators, in head-on configuration, one accelerating electrons, the other one positrons. The entire structure will stretch over a length of 31 km and will be able to reach a particle energy of 500 GeV in each beam. With a projected total cost of 5 billion USD, it can only be realized by an international collaboration of several contributing countries.


Large Hadron Collider Plasma Wave Electron Bunch International Linear Collider Electron Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dik, J., Janssens, K., VanDer Snickt, G., van der Loeff, L., Rickers, K., Cotte, M.: Visualization of a lost painting by vincent van gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal. Chem. 80(16), 6436–6442 (2008)CrossRefGoogle Scholar
  2. 2.
    Evans, L., Bryant, P.: LHC machine. J. Instrum. 3(08), S08007 (2008)Google Scholar
  3. 3.
    Anelli, G., et al.: The TOTEM Collaboration, The totem experiment at the CERN large hadron collider. J. Instrum. 3(08), S08007 (2008)Google Scholar
  4. 4.
    Adriani, O., et al.: The LHCf Collaboration, The LHCf detector at the CERN large hadron collider. J. Instrum. 3(08):S08006 (2008)Google Scholar
  5. 5.
    Alves, A. A. Jr., et al.: The LHCb Collaboration, The LHCb detector at the LHC. J. Instrum. 3(08):S08005 (2008)Google Scholar
  6. 6.
    Chatrchyan, S., et al.: The CMS Collaboration, The CMS experiment at the CERN LHC. J. Instrum. 3(08):S08004 (2008)Google Scholar
  7. 7.
    Aamodt, K., et al.: The ALICE Collaboration, The ALICE experiment at the CERN LHC. J. Instrum. 3(08):S08002 (2008)Google Scholar
  8. 8.
    Aad, G., et al.: The ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider. J. Instrum. 3(08):S08003 (2008)Google Scholar
  9. 9.
    Spira, M., Djouadi, A., Graudenz, D., Zerwas, R.M.: Higgs boson production at the LHC. Nucl. Phys. B 453(1–2), 17–82 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    Hinchliffe, I., Paige, F.E., Shapiro, M.D., Söderqvist, J., Yao, W.: Precision SUSY measurements at CERN LHC. Phys. Rev. D 55(9), 5520–5540 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    Dimopoulos, S., Landsberg, G.: Black holes at the large Hadron collider. Phys. Rev. Lett. 87(16), 161602 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Tajima, T. (ed.): The future of accelerator physics. AIP Conference Proceedings 356. AIP (1994)Google Scholar
  13. 13.
  14. 14.
    Mervis, J., Seife, C.: 10 years after the SSC: Lots of reasons, but few lessons. Science 302, 38–40 (2003)CrossRefGoogle Scholar
  15. 15.
    Mervis, J.: 10 years after the SSC: scientists are long gone, but bitter memories remain. Science 302, 40–41 (2003)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Barish, B.: Ilc/gde report. Proceedings of TILC 09, (2009)Google Scholar
  18. 18.
    Wu Chao, A., Tigner, M.: Handbook of Accelerator Physics and Engineering. World Scientific Publishing Co Pte Ltd (1999)Google Scholar
  19. 19.
    Koch, E.E.: Particle Accelerator Physics. 3rd edn. Springer, Berlin (2007)Google Scholar
  20. 20.
    Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. Lett. 43(4), 267 (1979)ADSCrossRefGoogle Scholar
  21. 21.
    Rosenzweig, J.B., Cline, D.B., Cole, B., Figueroa, H., Gai, W., Konecny, R., Norem, J., Schoessow, P., Simpson, J.: Experimental observation of plasma wake-field acceleration. Phys. Rev. Lett. 61(1), 98 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    Rosenzweig, J.B., Schoessow, P., Cole, B., Gai, W., Konecny, R., Norem, J., Simpson, J.: Experimental measurement of nonlinear plasma wake fields. Phys. Rev. A 39(3), 1586–1589 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    Nakanishi, H., Enomoto, A., Ogata, A., Nakajima, K., Whittum, D., Yoshida, Y., Ueda, T., Kobayashi, T., Shibata, H., Tagawa, S., Yugami, N., Nishida, Y.: Wakefield accelerator using twin linacs. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detectors Assoc. Equip. 328(3), 596–598 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    Berezin, A.K., Fainberg, Ya.B., Kiselev, V.A., Linnik, A.F., Uskov, V.V., Balakirev, V.A., Onishchendo, I.N., Sidelnikov, G.L., Sotnikov, G.V.: Wake field excitation in plasma by a relativistic electron pulse with a controlled number of short bunches. Plasma Phys. Rep. 20, 596 (1994)ADSGoogle Scholar
  25. 25.
    Hogan, M.J., Barnes, C.D., Clayton, F.J., Decker, C.E., Deng, S., Emma, P., Huang, C., Iverson, R.H., Johnson, D.K., Joshi, C., Katsouleas, T., Krejcik, P., Lu, W., Marsh, K.A., Mori, W.B., Muggli, P., O’Connell, C.L., Oz, E., Siemann, R.H., Walz, D.: Multi-gev energy gain in a plasma-wakefield accelerator. Phys. Rev. Lett. 95, 054802 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Blumenfeld, I., Clayton, C.E., Decker, F.-J., Hogan, M.J., Huang, C., Ischebeck, R., Iverson, R., Joshi, C., Katsouleas, T., Kirby, N., Lu, W., Marsh, K.A., Mori, W.B., Muggli, P., Oz, E., Siemann, R.H., Walz, D., Zhou, M.: Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445(7129), 741–744 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Kitagawa, Y., Matsumoto, T., Minamihata, T., Sawai, K., Matsuo, K., Mima, K., Nishihara, K., Azechi, H., Tanaka, K.A., Takabe, H., Nakai, S.: Beat-wave excitation of plasma wave and observation of accelerated electrons. Phys. Rev. Lett. 68(1), 48–51 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    Clayton, C.E., Everett, M.J., Lal, A., Gordon, D., Marsh, K.A., Joshi, C.: Acceleration and scattering of injected electrons in plasma beat wave accelerator experiments. Phys. Plasmas 1(5), 1753–1760 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    Everett, M., Lal, A., Gordon, D., Clayton, C.E., Marsh, K.A., Joshi, C.: Trapped electron acceleration by a laser-driven relativistic plasma wave. Nature 368(6471), 527–529 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    Ebrahim, N.A.: Optical mixing of laser light in a plasma and electron acceleration by relativistic electron plasma waves. J. Appl. Phys. 76(11), 7645–7647 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    Amiranoff, F., Ardonceau, J., Bercher, M., Bernard, D., Cros, B., Debraine, A., Dieulot, J.M., Fusellier, J., Jacquet, F., Joly, J.M., Juillard, M., Matthieussent, G., Matricon, P., Mine, P., Montes, B., Mora, P., Morano, R., Morillo, J., Moulin, F., Poilleux, P., Specka, A., Stenz, C.: Electron acceleration in the plasma beat-wave experiment at ecole polytechnique. In : Proceedings of the AIP Conference on Advanced Accelerator Concepts, 335, 612 (1995)Google Scholar
  32. 32.
    Hamster, H., Sullivan, A., Gordon, S., White, W., Falcone, R.W.: Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71(17), 2725–2728 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    Nakajima, K., Kawakubo, T., Nakanishi, H., Ogata, A., Kitagawa, Y., Kodama, R., Mima, K., Shiraga, H., Suzuki, K., Yamakawa, K., Zhang, T., Kato, Y., Fisher, D., Downer, M., Tajima, T., Sakawa, Y., Shoji, T., Yugami, N., Nishida, N.: Proof-ofprinciple experiments of laser wakefield acceleration using a 1 ps 10 TW Nd:glass laser. In: Proceedings of the AIP Conference on Advanced Accelerator Concepts, pp. 145–155 (1995)Google Scholar
  34. 34.
    Downer, M.C., Siders, C.W., Fisher, D.F., LeBlanc, S.P., Rau, B., Gaul, E., Tajima, T., Babine, A., Stepanov, A., Sergeev, A.: Laser wakefield photon accelerator: optical diagnostics for the laser wakefield accelerator based on longitudinal interferometry. Bullet Am. Phys. Soc. 40, 1862 (1995)Google Scholar
  35. 35.
    Marquès, J.R., Geindre, J.P., Amiranoff, F., Audebert, P., Gauthier, J.C., Antonetti, A., Grillon, G.: Temporal and spatial measurements of the electron density perturbation produced in the wake of an ultrashort laser pulse. Phys. Rev. Lett. 76(19), 3566–3569 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    Gorbunov, L.M., Kirsanov, V.I.: Excitation of plasma waves by an electromagnetic wave packet. SOV Phys. JETP 66, 290–294 (1987)Google Scholar
  37. 37.
    Bulanov, S.V., Kirsanov, V.I., Sakharov, A.S.: Excitation of ultrarelativistic plasma waves by pulse of electromagnetic radiation. JETP Lett. 50, 198–201 (1989)ADSGoogle Scholar
  38. 38.
    Sprangle, P., Esarey, E., Ting, A.: Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett. 64(17), 2011–2014 (1990)ADSCrossRefGoogle Scholar
  39. 39.
    Sprangle, P., Esarey, E., Ting, A.: Nonlinear interaction of intense laser pulses in plasmas. Phys. Rev. A 41, 4463–4469 (1990)ADSCrossRefGoogle Scholar
  40. 40.
    Coverdale, C.A., Darrow, C.B., Decker, C.D., Mori, W.B., Tzeng, K.-C., Marsh, K.A., Clayton, C.E., Joshi, C.: Propagation of intense subpicosecond laser pulses through underdense plasmas. Phys. Rev. Lett. 74(23), 4659–4662 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    Nakajima, K., Fisher, D., Kawakubo, T., Nakanishi, H., Ogata, A., Kato, Y., Kitagawa, Y., Kodama, R., Mima, K., Shiraga, H., Suzuki, K., Yamakawa, K., Zhang, T., Sakawa, Y., Shoji, T., Nishida, Y., Yugami, N., Downer, M., Tajima, T.: Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 74(22), 4428–4431 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Malka, V., Darrow, C.B., Danson, C., Neely, D., Walsh, F.N.: Electron acceleration from the breaking of relativistic plasma waves. Nature 377(6550), 606–608 (1995)ADSCrossRefGoogle Scholar
  43. 43.
    Wagner, R., Chen, S.-Y., Maksimchuk, A., Umstadter, D.: Electron acceleration by a laser wakefield in a relativistically self-guided channel. Phys. Rev. Lett. 78(16), 3125–3128 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    Moore, C.I., Ting, A., Krushelnick, K., Esarey, E., Hubbard, R.F., Hafizi, B., Burris, H.R., Manka, C., Sprangle, P.: Electron trapping in self-modulated laser wakefields by raman backscatter. Phys. Rev. Lett. 79(20), 3909–3912 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    Ting, A., Moore, C.I., Krushelnick, K., Manka, C., Esarey, E., Sprangle, P., Hbbard, R., Burris, H.R., Fischer, R., Baine, M.: Plasma wakefield generation and electron acceleration in a self-modulated laser wakefield accelerator experiment. Phys. Plasmas 4(5), 1889–1899 (1997)ADSCrossRefGoogle Scholar
  46. 46.
    Santala, M.I.K., Najmudin, Z., Clark, E.L., Tatarakis, M., Krushelnick, K., Dangor, A.E., Malka, V., Faure, J., Allott, R., Clarke, R.J.: Observation of a hot highcurrent electron beam from a self-modulated laser wakefield accelerator. Phys. Rev. Lett. 86(7), 1227–1230 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M., Burgy, F., Chambaret, J.-P., Chemin, J.-F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.-P., Scheurer, J.-N., Walton, B., Dangor, A.E.: Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298(5598), 1596–1600 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    Esarey, E., Sprangle, P., Krall, J., Ting, A.: Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24(2), 252 (1996)ADSCrossRefGoogle Scholar
  49. 49.
    Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 56(3), 219 (1985)ADSCrossRefGoogle Scholar
  50. 50.
    Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., Pogosova, A.A., Ramazashvili, R.R.: Resonant excitation of wakefields by a laser pulse in a plasma. JETP Lett. 55, 571–576 (1992)ADSGoogle Scholar
  51. 51.
    Antonsen, T.M., Mora, P.: Self-focusing and raman scattering of laser pulses in tenuous plasmas. Phys. Rev. Lett. 69(15), 2204–2207 (1992)ADSCrossRefGoogle Scholar
  52. 52.
    Esarey, E., Sprangle, P., Krall, J., Ting, A., Joyce, G.: Optically guided laser wakefield acceleration. Phys. Fluids B: Plasma Phys. 5(7), 2690–2697 (1993)CrossRefGoogle Scholar
  53. 53.
    Litvak, A.G.: Finite-amplitude wave beams in a magnetoactive plasma. Sov Phys. JETP 30, 344 (1970)ADSGoogle Scholar
  54. 54.
    Max, C.E., Arons, J., Langdon, A.B.: Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33(4), 209–212 (1974)ADSCrossRefGoogle Scholar
  55. 55.
    Tajima, T.: High energy laser plasma accelerators. Laser Part Beam 3(4), 351–413 (1985)ADSCrossRefGoogle Scholar
  56. 56.
    Barnes, D.C., Kurki-Suonio, T., Tajima, T.: Laser self-trapping for the plasma fiber accelerator. IEEE Trans. Plasma Sci. 15(2), 154–160 (1987)ADSCrossRefGoogle Scholar
  57. 57.
    Sprangle, P., Esarey, E., Ting, A., Joyce, G.: Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53(22), 2146–2148 (1988)ADSCrossRefGoogle Scholar
  58. 58.
    Forslund, D.W., Kindel, J.M., Lindman, E.L.: Theory of stimulated scattering processes in laser-irradiated plasmas. Phys. Fluids 18(8), 1002–1016 (1975)ADSCrossRefGoogle Scholar
  59. 59.
    Mori, W.B., Decker, C.D., Hinkel, D.E., Katsouleas, T.: Raman forward scattering of short-pulse high-intensity lasers. Phys. Rev. Lett. 72(10), 1482–1485 (1994)ADSCrossRefGoogle Scholar
  60. 60.
    Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-ter Vehn, J., Pretzler, G., Thirolf, P., Habs, D., Witte, K.J.: Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83(23), 4772–4775 (1999)ADSCrossRefGoogle Scholar
  61. 61.
    Geissler, M., Schreiber, J., Meyer-Ter-Vehn, J.: Bubble acceleration of electrons with few-cycle laser pulses. New J. Phys. 8, 186 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    Pukhov, A., Meyer-Ter-Vehn, J.: Laser wake field acceleration: the highly nonlinear broken-wave regime. Appl. Phys. B 74, 355 (2002)ADSCrossRefGoogle Scholar
  63. 63.
    Lu, W., Huang, C., Zhou, M., Mori, W.B., Katsouleas, T.: Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96(16), 165002 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    Tsung, F.S., Lu, W., Tzoufras, M., Mori, W.B., Joshi, C., Vieira, J.M., Silva, L.O., Fonseca, R.A.: Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25 TW lasers. Phys. Plasmas 13(5), 056708 (2006)ADSCrossRefGoogle Scholar
  65. 65.
    Gordienko, S., Pukhov, A.: Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 12, 043109 (2005)ADSCrossRefGoogle Scholar
  66. 66.
    Pukhov, A., Gordienko, S.: Bubble regime of wake field acceleration: similarity theory and optimal scalings. Phil. Trans. R. Soc. A 364, 623 (2006)ADSCrossRefGoogle Scholar
  67. 67.
    Hafz, N.A.M., Jeong, T.M., Choi, I.W., Lee, S.K., Pae, K.H., Kulagin, V.K., Sung, J.H., Yu, T.J., Hong, K.-H., Hosokai, T., Cary, J.R., Ko, D.-K., Lee, J.: Stable generation of GeV-class electron beams from self-guided laser-plasma channels. Nat. Phot. 2, 571 (2008)CrossRefGoogle Scholar
  68. 68.
    Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy F., Malka, V. : A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541 (2004)ADSCrossRefGoogle Scholar
  69. 69.
    Geddes, C.G.R. et al.: High quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538 (2004)ADSCrossRefGoogle Scholar
  70. 70.
    Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R., Krushelnick, K.: Monoenergetic beams of relativistic electrons from intense laser plasma interactions. Nature 431, 535 (2004)ADSCrossRefGoogle Scholar
  71. 71.
    Hidding, B., Amthor, K.-U., Liesfeld, B., Schwoerer, H., Karsch, S., Geissler, M., Veisz, L., Schmid, K., Gallacher, J.G., Jamison, S.P., Jaroszynski, D., Pretzler, G., Sauerbrey, R.: Generation of quasimonoenergetic electron bunches with 80-fs laser pulses. Phys. Rev. Lett. 96(10), 105004 (2006)ADSCrossRefGoogle Scholar
  72. 72.
    Leemans, W.P., Nagler, B., Gonsalves, A.J., Toth C, s., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B., Hooker, S.M.: Gev electron beams from a centimetre-scale accelerator. Nature Phys. 2, 696 (2006)ADSCrossRefGoogle Scholar
  73. 73.
    Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y., Malka, V.: Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737 (2006)ADSCrossRefGoogle Scholar
  74. 74.
    Rechatin, C., Faure, J., Ben-Ismail, A., Lim, J., Fitour, R., Specka, A., Videau, H., Tafzi, A., Burgy, F., Malka, V.: Controlling the phase-space volume of injected electrons in a laser-plasma accelerator. Phys. Rev. Lett. 102(16), 164801 (2009)ADSCrossRefGoogle Scholar
  75. 75.
    Osterhoff, J., Popp, A., Major Z, s., Marx, B., Rowlands-Rees, T.P., Fuchs, M., Geissler, M., Hörlein, R., Hidding, B., Becker, S., Peralta, E.A., Schramm, U., Grüner, F., Habs, D., Krausz, F., Hooker, S.M., Karsch, S.: Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-stateflow gas cell. Phys. Rev. Lett. 101(8), 085002 (2008)ADSCrossRefGoogle Scholar
  76. 76.
    Tavella, F., Nomura, Y., Veisz, L., Pervak, V., Marcinkevičius, A., Krausz, F.: Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier. Opt. Lett. 32(15), 2227–2229 (2007)ADSCrossRefGoogle Scholar
  77. 77.
    Mangles, S.P.D., Walton, B.R., Tzoufras, M., Najmudin, Z., Clarke, R.J., Dangor, A.E., Evans, R.G., Fritzler, S., Gopal, A., Hernandez-Gomez, C., Mori, W.B., Rozmus, W., Tatarakis, M., Thomas, A.G.R., Tsung, F.S., Wei, M.S., Krushelnick, K.: Electron acceleration in cavitated channels formed by a petawatt laser in low-density plasma. Phys. Rev. Lett. 94(24), 245001 (2005)ADSCrossRefGoogle Scholar
  78. 78.
    Malka, V., Faure, J., Glinec, Y., Pukhov, A., Rousseau, J.-P.: Monoenergetic electron beam optimization in the bubble regime. Phys. Plasmas 12(5), 056702 (2005)ADSCrossRefGoogle Scholar
  79. 79.
    Geddes, C.G.R., Toth, Cs., van Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J., Leemans, W.P.: Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma accelerators. Phys. Plasmas 12, 056709 (2005)ADSCrossRefGoogle Scholar
  80. 80.
    Hosokai, T., Kinoshita, T., Ohkubo, T., Maekawa, A., Uesaka, M., Zhidkov, A., Yamazaki, A., Kotaki, H., Kando, M., Nakajima, K., Bulanov, S.V., Tomassini, P., Giulietti, A., Giulietti, D.: Observation of strong correlation between quasimonoenergetic electron beam generation by laser wakefield and laser guiding inside a preplasma cavity. Phys. Rev. E 73(3), 036407 (2006)ADSCrossRefGoogle Scholar
  81. 81.
    Maksimchuk, A., Reed, S., Bulanov, S.S., Chvykov, V., Kalintchenko, G., Matsuoka, T., McGuffey, C., Mourou, G., Naumova, N., Nees, J., Rousseau, P., Yanovsky, V., Krushelnick, K., Matlis, N.H., Kalmykov, S., Shvets, G., Downer, M.C., Vane, C.R., Beene, J.R., Stracener, D., Schultz, D.R.: Studies of laser wakefield structures and electron acceleration in underdense plasmas. Phys. Plasmas 15(5), 056703 (2008)ADSCrossRefGoogle Scholar
  82. 82.
    Yamazaki, A., Kotaki, H., Daito, I., Kando, M., Bulanov, S.V., Esirkepov, T.Zh., Kondo, S., Kanazawa, S., Homma, T., Nakajima, K., Oishi, Y., Nayuki, T., Fujii, T., Nemoto, K.: Quasi-monoenergetic electron beam generation during laser pulse interaction with very low density plasmas. Phys. Plasmas 12(9), 093101 (2005)ADSCrossRefGoogle Scholar
  83. 83.
    Masuda, S., Miura, E., Koyama, K., Kato, S., Adachi, M., Watanabe, T., Torii, K., Tanimoto, M.: Energy scaling of monoenergetic electron beams generated by the laser-driven plasma based accelerator. Phys. Plasmas 14(2), 023103 (2007)ADSCrossRefGoogle Scholar
  84. 84.
    Miura, E., Koyama, K., Kato, S., Saito, N., Adachi, M., Kawada, Y., Nakamura, T., Tanimoto, M.: Demonstration of quasi-monoenergetic electron-beam generation in laser-driven plasma acceleration. Appl. Phys. Lett. 86, 251501 (2005)ADSCrossRefGoogle Scholar
  85. 85.
    Hsieh, C.-T., Huang, C.-M., Chang, C.-L., Ho, Y.-C., Chen, Y.-S., Lin, J.-Y., Wang, J., Chen, S.-Y.: Tomography of injection and acceleration of monoenergetic electrons in a laser-wakefield accelerator. Phys. Rev. Lett. 96(9), 095001 (2006)ADSCrossRefGoogle Scholar
  86. 86.
    Leemans, W.P., Geddes, C.G.R., Faure, J., Tóth, Cs., van Tilborg, J., Schroeder, C.B., Esarey, E., Fubiani, G., Auerbach, D., Marcelis, B., Carnahan, M.A., Kaindl, R.A., Byrd, J., Martin, M.C.: of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 91(7), 074802 (2003)ADSCrossRefGoogle Scholar
  87. 87.
    Schroeder, C.B., Esarey, E., van Tilborg, J., Leemans, W.P.: Theory of coherent transition radiation generated at a plasma-vacuum interface. Phys. Rev. E 69(016501), (2004)Google Scholar
  88. 88.
    van Tilborg, J., Schroeder, C.B., Filip, C.V., Tóth, Cs., Geddes, C.G.R., Fubiani, G., Huber, R., Kaindl, R.A., Esarey, E., Leemans, W.P.: Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. Phys. Rev. Lett. 96(1), 014801 (2006)ADSCrossRefGoogle Scholar
  89. 89.
    Butler, A., Gonsalves, A.J., McKenna, C.M., Spence, D.J., Hooker, S.M., Sebban, S., Mocek, T., Bettaibi, I., Cros, B.: Demonstration of a collisionally excited optical-field-ionization XUV laser driven in a plasma waveguide. Phys. Rev. Lett. 91(20), 205001 (2003)ADSCrossRefGoogle Scholar
  90. 90.
    Rousse, A., Phuoc, K.T., Shah, R., Pukhov, A., Lefebvre, E., Malka, V., Kiselev, S., Burgy, F., Rousseau, J.-P., Umstadter, D., Hulin, D.: Production of a KeV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93(13), 135005 (2004)ADSCrossRefGoogle Scholar
  91. 91.
    Phuoc, K.T., Burgy, F., Rousseau, J.-P., Malka, V., Rousse, A., Shah, R., Umstadter, D., Pukhov, A., Kiselev, S.: Laser based synchrotron radiation. Phys. Plasmas, 12(2), 023101 (2005)ADSCrossRefGoogle Scholar
  92. 92.
    Phuoc, K.T., Corde, S., Shah, R., Albert, F., Fitour, R., Rousseau, J.-P., Burgy, F., Mercier, B., Rousse, A.: Imaging electron trajectories in a laser-wakefield cavity using betatron X-ray radiation. Phys. Rev. Lett. 97(22), 225002 (2006)ADSCrossRefGoogle Scholar
  93. 93.
    Kneip, S., Nagel, S.R., Bellei, C., Bourgeois, N., Dangor, A.E., Gopal, A., Heathcote, R., Mangles, S.P.D., Marquès, J.R., Maksimchuk, A., Nilson, P.M., Phuoc, K.Ta., Reed, S., Tzoufras, M., Tsung, F.S., Willingale, L., Mori, W.B., Rousse, A., Krushelnick, K., Najmudin, Z.: Observation of synchrotron radiation from electrons accelerated in a Petawatt-laser-generated plasma cavity. Phys. Rev. Lett. 100(10), 105006 (2008)ADSCrossRefGoogle Scholar
  94. 94.
    Albert, F., Shah, R., Phuoc, K.T., Fitour, R., Burgy, F., Rousseau, J.-P., Tafzi, A., Douillet, D., Lefrou, T., Rousse, A.: Betatron oscillations of electrons accelerated in laser wakefields characterized by spectral X-ray analysis. Phys. Rev. E 77(5), 056402 (2008)ADSCrossRefGoogle Scholar
  95. 95.
    Krushelnick, K., Clark, E.L., Najmudin, Z., Salvati, M., Santala, M.I.K., Tatarakis, M., Dangor, A.E., Malka, V., Neely, D., Allott, R., Danson, C.: Multimev ion production from high-intensity laser interactions with underdense plasmas. Phys. Rev. Lett. 83(4), 737–740 (1999)ADSCrossRefGoogle Scholar
  96. 96.
    Willingale, L., Mangles, S.P.D, Nilson, P.M, Clarke, R.J, Dangor, A.E, Kaluza, M.C, Karsch, S., Lancaster, K.L, Mori, W.B, Najmudin, Z., Schreiber, J., Thomas, A.G.R, Wei, M.S, Krushelnick, K.: Collimated multi-mev ion beams from high-intensity laser interactions with underdense plasma. Phys. Rev. Lett. 96(24), 245002 (2006)ADSCrossRefGoogle Scholar
  97. 97.
    Faure, J., Glinec, Y., Santos, J.J., Ewald, F., Rousseau, J.-P., Kiselev, S., Pukhov, A., Hosokai, T., Malka, V.: Observation of laser-pulse shortening in nonlinear plasma waves. Phys. Rev. Lett. 95(20), 205003 (2005)ADSCrossRefGoogle Scholar
  98. 98.
    Kando, M., Fukuda, Y., Pirozhkov, A.S., Ma, J., Daito, I., Chen, L.-M., Esirkepov, T.Zh., Ogura, K., Homma, T., Hayashi, Y., Kotaki, H., Sagisaka, A., Mori, M., Koga, J.K., Daido, H., Bulanov, S.V., Kimura, T., Kato, Y., Tajima, T.: Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield. Phys. Rev. Lett. 99(13), 135001 (2007)ADSCrossRefGoogle Scholar
  99. 99.
    Pegoraro, F., Bulanov, S.V., Califano, F., Esirkepov, T.Zh., Lontano, M., Meyer-ter Vehn, J., Naumova, N.M., Pukhov, A.M., Vshivkov, V.A.: Magnetic fields from high-intensity laser pulses in plasmas. Plasma Phys. Control Fusion 39, 261–272 (1997)CrossRefGoogle Scholar
  100. 100.
    Bulanov, S.S., Esirkepov, T.Zh., Kamenets, F.F., Pegoraro, F.: Single-cycle highintensity electromagnetic pulse generation in the interaction of a plasma wakefieldwith regular nonlinear structures. Phys. Rev. E (Stat, Nonlinear, Soft Matter Phys.) 73(3), 036408 (2006)ADSCrossRefGoogle Scholar
  101. 101.
    Dun, H., Mattes, B.L., Stevenson, D.A.: The gas dynamics of a conical nozzle molecular beam sampling system. Chem. Phys. 38, 161 (1979)CrossRefGoogle Scholar
  102. 102.
    Knuth, E.L.: Size correlations for condensation clusters produced in free-jet expansions. J. Chem. Phys. 107(21), 9125–9132 (1997)ADSCrossRefGoogle Scholar
  103. 103.
    Ditmire, T., Smith, R.A.: Short-pulse laser interferometric measurement of absolute gas densities from a cooled gas jet. Opt. Lett. 23(8), 618 (1998)ADSCrossRefGoogle Scholar
  104. 104.
    Smith, R.A., Ditmire, T., Tisch, J.W.G.: Characterization of a cryogenically cooled high-pressure gas laser/cluster interaction experiments. Rev. Sci. Inst. 69(11), 3798 (1998)ADSCrossRefGoogle Scholar
  105. 105.
    Khoukaz, A., Lister, T., Quentmeier, C., Santo, R., Thomas, C.: Systematic studies on hydrogen cluster beam production. Eur. Phys. J. D 5, 275 (1999)ADSGoogle Scholar
  106. 106.
    Pedemonte, L., Bracco, G., Tatarek, R.: Theoretical and experimental study of he free-jet expansions. Phys. Rev. A 59(4), 3084 (1999)ADSCrossRefGoogle Scholar
  107. 107.
    Even, U., Jortner, J., Noy, D., Lavie, N., Cossart-Magos, C.: Cooling of large molecules below 1 k and He clusters formation. J. Chem. Phys. 112(18), 8068 (2000)ADSCrossRefGoogle Scholar
  108. 108.
    Parra, E., McNaught, S.J., Milchberg, H.M.: Characterization of a cryogenic, high-pressure gas jet operated in the droplet regime. Rev. Sci. Instrum. 73(2), 468–475 (2002)ADSCrossRefGoogle Scholar
  109. 109.
    Kim, K.Y., Kumarappan, V., Milchberg, H.M.: Measurement of the average size and density of clusters in a gas jet. Appl. Phys. Lett. 83(15), 3210–3212 (2003)ADSCrossRefGoogle Scholar
  110. 110.
    Lawrence, L.S., French, R.J.: Electron diffraction investigation of pulsed supersonic jets. Rev. Sci. Inst. 60(7), 1223 (1989)ADSGoogle Scholar
  111. 111.
    Pronko, J., Kohler, D., Chapman, I.V., Bardin, T.T., Filbert, P.C., Hawley, J.D.: Density measurement of a pulsed supersonic gas jet using nuclear scattering. Rev. Sci. Inst. 64, 1744 (1993)ADSCrossRefGoogle Scholar
  112. 112.
    Perry, M.D., Darrow, C., Coverdale, C., Crane, J.K.: Measurement of the local electron density by means of stimulated raman scattering in a laser-produced gas jet plasma. Opt. Lett. 17(7), 523 (1992)ADSCrossRefGoogle Scholar
  113. 113.
    Lompré, L.A., Ferray, M., L’Huillier, A., Li, X.F., Mainfray, G.: Optical determination of the characteristics of a pulsed gas jet. J. Appl. Phys. 63(5), 1791 (1988)ADSCrossRefGoogle Scholar
  114. 114.
    Tejeda, G., Maté, B., Fernández-Sánchez, J.M., Montero, S.: Temperature and density mapping of supersonic jet expansions using linear raman spectroscopy. Phys. Rev. Lett. 76(1), 34–37 (1996)ADSCrossRefGoogle Scholar
  115. 115.
    Winckler, J.: The mach interferometer applied to studying an axially symmetric supersonic air jet. Rev. Sci. Instrum. 19(5), 307–322 (1948)ADSCrossRefGoogle Scholar
  116. 116.
    Behjat, A., Tallents, G.J., Neely, D.: The characterization of a high-density gas jet. J. Phys. D: Appl. Phys. 30, 2872 (1997)ADSCrossRefGoogle Scholar
  117. 117.
    Auguste, T., Bougeard, M., Caprin, E., D’Oliveira, P., Monot, P.: Characterization of a high-density large scale pulsed gas jet for laser–gas interaction experiments. Rev. Sci. Instrum. 70(5), 2349–2354 (1999)ADSCrossRefGoogle Scholar
  118. 118.
    Azambuja\(\dag,\) R., Eloy, M., Figueira, G., Neely, D.: Three-dimensional characterization of high-density non-cylindrical pulsed gas jets. J. Phys. D: Appl. Phys. 32, 35 (1999)Google Scholar
  119. 119.
    Malka, V., Coulaud, C., Geindre, J.P., Lopez, V., Najmudin, Z., Neely, D., Amiranoff, F.: Characterization of neutral density profile in a wide range of pressure of cylindrical pulsed gas jets. Rev. Sci. Instrum. 71(6), 2329–2333 (2000)ADSCrossRefGoogle Scholar
  120. 120.
    Kim, C., Kim, G.-H., Kim, J.-U., Ko, I.S., Suk, H.: Characterizations of symmetry and asymmetry high-density gas jets without abel inversion. Rev. Sci. Instrum. 75(9), 2865–2868 (2004)ADSCrossRefGoogle Scholar
  121. 121.
    Semushin, S., Malka, V.: High density gas jet nozzle design for laser target production. Rev. Sci. Inst. 72(7), 2961 (2001)ADSCrossRefGoogle Scholar
  122. 122.
    Hosokai T., et al. Supersonic gas jet target for generation of relativistic electrons with 12 TW-50 fs laser pulse. In: Proceedings of EPAC 2002, pp. 981–983, (2002)Google Scholar
  123. 123.
    Janson S.W., Helvajian H., Breuer K. Mems, Microengineering and aerospace systems. AIAA (99–3802), (1999)Google Scholar
  124. 124.
    Hitt, D.L., Zakrzwski, C.M., Thomas, M.A.: Mems-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition. Smart Mater. Struct. 10, 1163 (2001)ADSCrossRefGoogle Scholar
  125. 125.
    Xie, C.: Characteristics of micronozzle gas flows. Phys. Fluids 19(3), 037102 (2007)ADSCrossRefGoogle Scholar
  126. 126.
    Broc, A., de Benedictis, S., Dilecce, G., Vigliotti, M., Sharafutdinov, R.G., Skovorodko, P.A.: Experimental and numerical investigation of an O2/NO supersonic free jet expansion. J. Fluid Mech. 500, 211 (2004)ADSzbMATHCrossRefGoogle Scholar
  127. 127.
    Boyd, I.D., Beattie, D.R., Cappelli, M.A.: Numerical and experimental investigations of low-density supersonic jets of hydrogen. J. Fluid Mech. 280, 41 (1994)ADSCrossRefGoogle Scholar
  128. 128.
    Boyd, I.D., Chen, G., Candler, G.: Predicting failure of the continuum fluid equations in translational hypersonic flows. Phys. Fluids 7(1), 210 (1995)ADSzbMATHCrossRefGoogle Scholar
  129. 129.
    Mo H., Lin C., Gokaltun S., Skudarnov P.V.: Numerical study of axisymmetric gas flow in conical micronozzles by DSMC an continuum methods. AIAA (2006–991) (2006)Google Scholar
  130. 130.
    Agarwal, R.K.: Beyond Navier-Stokes: Burnett equations for flows in the continuum-transition regime. Phys. Fluids 13(10), 3061–3085 (2001)ADSCrossRefGoogle Scholar
  131. 131.
    Pandey, B.P., Raju, R., Roy, S., Finite element model of fluid flow inside a micro thruster. AIAA (2002–5733),(2002)Google Scholar
  132. 132.
    Gadepalli, V.V.V., Lin, C. NavierSstokes modeling of gas flows in a de-laval micronozzle. AIAA (2006–1425), (2006)Google Scholar
  133. 133.
    Hao, P.-F., Ding, Y.-T., Yao, Z.-H., He, F., Zhu, K.-Q.: Size effect on gas flow in micro nozzles. J. Micromech. Microeng. 15, 2069 (2005)ADSCrossRefGoogle Scholar
  134. 134.
    Alexeenko, A.A., Fedosov, D.A., Gimelshein, S.F., Levin, D.A., Collins, R.J.: Transient heat transfer and gas flow in a mems-based thruster. J. Microelectromech 15(1), 181 (2006)CrossRefGoogle Scholar
  135. 135.
    Louisos, W.F., Hitt, D.L.: Optimal expansion angle for viscous supersonic flow in 2-d micro nozzles. AIAA, (2005–5032), (2005)Google Scholar
  136. 136.
    Alexeenko, A.A., Levin, D.A., Gimelshein, S.F., Collins, R.J., Reed, B.D.: Numerical modeling of axisymmetric and three-dimensional flows in microelectromechanical systems nozzles. AIAA J. 40(5), 897 (2002)ADSCrossRefGoogle Scholar
  137. 137.
    Mate, B., Graur, I.A., Elizarova, T., Chirokov, I., Tejeda, G., Fernandez, J.M., Montero, S.: Experimental and numerical investigation of an axisymmetric supersonic jet. J. Fluid Mech. 426, 177 (2001)ADSzbMATHCrossRefGoogle Scholar
  138. 138.
    Ketsdever, A., Wadsworth, D.C., Wapner, P.G., Ivanov, M.S., Markelov, G.N.: Fabrication and predicted performance of conical delaval micronozzles. AIAA (99–2724) (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations