Laser Wakefield Electron Acceleration pp 1-17 | Cite as
Introduction
- 625 Downloads
Abstract
For a century, the on-going development of particle accelerators has been promoting many branches of fundamental and applied research. What began as a tool for nuclear and particle physics, has expanded its use into solid state physics as well as medicine, biology and even history [1]. As these lines are written, the superconducting magnets of the Large Hadron Collider (LHC) [2, 3, 4, 5, 6, 7, 8] at the CERN laboratory are being cooled down to liquid Helium temperature and in a few months’ time, the largest collider ever built will commence operation. With its two counter-propagating proton beams having 7 TeV energy each, it is expected to shed new light on hot topics such as the fundamental origin of mass in form of the famous HIGGS Boson [9], dark energy and dark matter [10], the possible existence of small extra dimensions in space-time [11], and many more. However, looking at the tremendous scale of this project, it is valid to ask the question whether this collider will actually stay the largest collider ever built for many decades to come. With the Superconducting Super Collider (SSC) [12, 13, 14, 15] in Texas, USA, having been cancelled in 1993 due to exploding cost-forecasts that saw the final price tag exceeding 12 billion USD, the only remaining accelerator project which is of comparable magnitude to the LHC is the International Linear Collider (ILC) [16, 17]. The latter will—if realized—consist of two linear accelerators, in head-on configuration, one accelerating electrons, the other one positrons. The entire structure will stretch over a length of 31 km and will be able to reach a particle energy of 500 GeV in each beam. With a projected total cost of 5 billion USD, it can only be realized by an international collaboration of several contributing countries.
Keywords
Large Hadron Collider Plasma Wave Electron Bunch International Linear Collider Electron AccelerationReferences
- 1.Dik, J., Janssens, K., VanDer Snickt, G., van der Loeff, L., Rickers, K., Cotte, M.: Visualization of a lost painting by vincent van gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal. Chem. 80(16), 6436–6442 (2008)CrossRefGoogle Scholar
- 2.Evans, L., Bryant, P.: LHC machine. J. Instrum. 3(08), S08007 (2008)Google Scholar
- 3.Anelli, G., et al.: The TOTEM Collaboration, The totem experiment at the CERN large hadron collider. J. Instrum. 3(08), S08007 (2008)Google Scholar
- 4.Adriani, O., et al.: The LHCf Collaboration, The LHCf detector at the CERN large hadron collider. J. Instrum. 3(08):S08006 (2008)Google Scholar
- 5.Alves, A. A. Jr., et al.: The LHCb Collaboration, The LHCb detector at the LHC. J. Instrum. 3(08):S08005 (2008)Google Scholar
- 6.Chatrchyan, S., et al.: The CMS Collaboration, The CMS experiment at the CERN LHC. J. Instrum. 3(08):S08004 (2008)Google Scholar
- 7.Aamodt, K., et al.: The ALICE Collaboration, The ALICE experiment at the CERN LHC. J. Instrum. 3(08):S08002 (2008)Google Scholar
- 8.Aad, G., et al.: The ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider. J. Instrum. 3(08):S08003 (2008)Google Scholar
- 9.Spira, M., Djouadi, A., Graudenz, D., Zerwas, R.M.: Higgs boson production at the LHC. Nucl. Phys. B 453(1–2), 17–82 (1995)ADSCrossRefGoogle Scholar
- 10.Hinchliffe, I., Paige, F.E., Shapiro, M.D., Söderqvist, J., Yao, W.: Precision SUSY measurements at CERN LHC. Phys. Rev. D 55(9), 5520–5540 (1997)ADSCrossRefGoogle Scholar
- 11.Dimopoulos, S., Landsberg, G.: Black holes at the large Hadron collider. Phys. Rev. Lett. 87(16), 161602 (2001)ADSCrossRefGoogle Scholar
- 12.Tajima, T. (ed.): The future of accelerator physics. AIP Conference Proceedings 356. AIP (1994)Google Scholar
- 13.
- 14.Mervis, J., Seife, C.: 10 years after the SSC: Lots of reasons, but few lessons. Science 302, 38–40 (2003)CrossRefGoogle Scholar
- 15.Mervis, J.: 10 years after the SSC: scientists are long gone, but bitter memories remain. Science 302, 40–41 (2003)CrossRefGoogle Scholar
- 16.
- 17.Barish, B.: Ilc/gde report. Proceedings of TILC 09, (2009)Google Scholar
- 18.Wu Chao, A., Tigner, M.: Handbook of Accelerator Physics and Engineering. World Scientific Publishing Co Pte Ltd (1999)Google Scholar
- 19.Koch, E.E.: Particle Accelerator Physics. 3rd edn. Springer, Berlin (2007)Google Scholar
- 20.Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. Lett. 43(4), 267 (1979)ADSCrossRefGoogle Scholar
- 21.Rosenzweig, J.B., Cline, D.B., Cole, B., Figueroa, H., Gai, W., Konecny, R., Norem, J., Schoessow, P., Simpson, J.: Experimental observation of plasma wake-field acceleration. Phys. Rev. Lett. 61(1), 98 (1988)ADSCrossRefGoogle Scholar
- 22.Rosenzweig, J.B., Schoessow, P., Cole, B., Gai, W., Konecny, R., Norem, J., Simpson, J.: Experimental measurement of nonlinear plasma wake fields. Phys. Rev. A 39(3), 1586–1589 (1989)ADSCrossRefGoogle Scholar
- 23.Nakanishi, H., Enomoto, A., Ogata, A., Nakajima, K., Whittum, D., Yoshida, Y., Ueda, T., Kobayashi, T., Shibata, H., Tagawa, S., Yugami, N., Nishida, Y.: Wakefield accelerator using twin linacs. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detectors Assoc. Equip. 328(3), 596–598 (1993)ADSCrossRefGoogle Scholar
- 24.Berezin, A.K., Fainberg, Ya.B., Kiselev, V.A., Linnik, A.F., Uskov, V.V., Balakirev, V.A., Onishchendo, I.N., Sidelnikov, G.L., Sotnikov, G.V.: Wake field excitation in plasma by a relativistic electron pulse with a controlled number of short bunches. Plasma Phys. Rep. 20, 596 (1994)ADSGoogle Scholar
- 25.Hogan, M.J., Barnes, C.D., Clayton, F.J., Decker, C.E., Deng, S., Emma, P., Huang, C., Iverson, R.H., Johnson, D.K., Joshi, C., Katsouleas, T., Krejcik, P., Lu, W., Marsh, K.A., Mori, W.B., Muggli, P., O’Connell, C.L., Oz, E., Siemann, R.H., Walz, D.: Multi-gev energy gain in a plasma-wakefield accelerator. Phys. Rev. Lett. 95, 054802 (2005)ADSCrossRefGoogle Scholar
- 26.Blumenfeld, I., Clayton, C.E., Decker, F.-J., Hogan, M.J., Huang, C., Ischebeck, R., Iverson, R., Joshi, C., Katsouleas, T., Kirby, N., Lu, W., Marsh, K.A., Mori, W.B., Muggli, P., Oz, E., Siemann, R.H., Walz, D., Zhou, M.: Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445(7129), 741–744 (2007)ADSCrossRefGoogle Scholar
- 27.Kitagawa, Y., Matsumoto, T., Minamihata, T., Sawai, K., Matsuo, K., Mima, K., Nishihara, K., Azechi, H., Tanaka, K.A., Takabe, H., Nakai, S.: Beat-wave excitation of plasma wave and observation of accelerated electrons. Phys. Rev. Lett. 68(1), 48–51 (1992)ADSCrossRefGoogle Scholar
- 28.Clayton, C.E., Everett, M.J., Lal, A., Gordon, D., Marsh, K.A., Joshi, C.: Acceleration and scattering of injected electrons in plasma beat wave accelerator experiments. Phys. Plasmas 1(5), 1753–1760 (1994)ADSCrossRefGoogle Scholar
- 29.Everett, M., Lal, A., Gordon, D., Clayton, C.E., Marsh, K.A., Joshi, C.: Trapped electron acceleration by a laser-driven relativistic plasma wave. Nature 368(6471), 527–529 (1994)ADSCrossRefGoogle Scholar
- 30.Ebrahim, N.A.: Optical mixing of laser light in a plasma and electron acceleration by relativistic electron plasma waves. J. Appl. Phys. 76(11), 7645–7647 (1994)ADSCrossRefGoogle Scholar
- 31.Amiranoff, F., Ardonceau, J., Bercher, M., Bernard, D., Cros, B., Debraine, A., Dieulot, J.M., Fusellier, J., Jacquet, F., Joly, J.M., Juillard, M., Matthieussent, G., Matricon, P., Mine, P., Montes, B., Mora, P., Morano, R., Morillo, J., Moulin, F., Poilleux, P., Specka, A., Stenz, C.: Electron acceleration in the plasma beat-wave experiment at ecole polytechnique. In : Proceedings of the AIP Conference on Advanced Accelerator Concepts, 335, 612 (1995)Google Scholar
- 32.Hamster, H., Sullivan, A., Gordon, S., White, W., Falcone, R.W.: Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71(17), 2725–2728 (1993)ADSCrossRefGoogle Scholar
- 33.Nakajima, K., Kawakubo, T., Nakanishi, H., Ogata, A., Kitagawa, Y., Kodama, R., Mima, K., Shiraga, H., Suzuki, K., Yamakawa, K., Zhang, T., Kato, Y., Fisher, D., Downer, M., Tajima, T., Sakawa, Y., Shoji, T., Yugami, N., Nishida, N.: Proof-ofprinciple experiments of laser wakefield acceleration using a 1 ps 10 TW Nd:glass laser. In: Proceedings of the AIP Conference on Advanced Accelerator Concepts, pp. 145–155 (1995)Google Scholar
- 34.Downer, M.C., Siders, C.W., Fisher, D.F., LeBlanc, S.P., Rau, B., Gaul, E., Tajima, T., Babine, A., Stepanov, A., Sergeev, A.: Laser wakefield photon accelerator: optical diagnostics for the laser wakefield accelerator based on longitudinal interferometry. Bullet Am. Phys. Soc. 40, 1862 (1995)Google Scholar
- 35.Marquès, J.R., Geindre, J.P., Amiranoff, F., Audebert, P., Gauthier, J.C., Antonetti, A., Grillon, G.: Temporal and spatial measurements of the electron density perturbation produced in the wake of an ultrashort laser pulse. Phys. Rev. Lett. 76(19), 3566–3569 (1996)ADSCrossRefGoogle Scholar
- 36.Gorbunov, L.M., Kirsanov, V.I.: Excitation of plasma waves by an electromagnetic wave packet. SOV Phys. JETP 66, 290–294 (1987)Google Scholar
- 37.Bulanov, S.V., Kirsanov, V.I., Sakharov, A.S.: Excitation of ultrarelativistic plasma waves by pulse of electromagnetic radiation. JETP Lett. 50, 198–201 (1989)ADSGoogle Scholar
- 38.Sprangle, P., Esarey, E., Ting, A.: Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett. 64(17), 2011–2014 (1990)ADSCrossRefGoogle Scholar
- 39.Sprangle, P., Esarey, E., Ting, A.: Nonlinear interaction of intense laser pulses in plasmas. Phys. Rev. A 41, 4463–4469 (1990)ADSCrossRefGoogle Scholar
- 40.Coverdale, C.A., Darrow, C.B., Decker, C.D., Mori, W.B., Tzeng, K.-C., Marsh, K.A., Clayton, C.E., Joshi, C.: Propagation of intense subpicosecond laser pulses through underdense plasmas. Phys. Rev. Lett. 74(23), 4659–4662 (1995)ADSCrossRefGoogle Scholar
- 41.Nakajima, K., Fisher, D., Kawakubo, T., Nakanishi, H., Ogata, A., Kato, Y., Kitagawa, Y., Kodama, R., Mima, K., Shiraga, H., Suzuki, K., Yamakawa, K., Zhang, T., Sakawa, Y., Shoji, T., Nishida, Y., Yugami, N., Downer, M., Tajima, T.: Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 74(22), 4428–4431 (1995)ADSCrossRefGoogle Scholar
- 42.Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Malka, V., Darrow, C.B., Danson, C., Neely, D., Walsh, F.N.: Electron acceleration from the breaking of relativistic plasma waves. Nature 377(6550), 606–608 (1995)ADSCrossRefGoogle Scholar
- 43.Wagner, R., Chen, S.-Y., Maksimchuk, A., Umstadter, D.: Electron acceleration by a laser wakefield in a relativistically self-guided channel. Phys. Rev. Lett. 78(16), 3125–3128 (1997)ADSCrossRefGoogle Scholar
- 44.Moore, C.I., Ting, A., Krushelnick, K., Esarey, E., Hubbard, R.F., Hafizi, B., Burris, H.R., Manka, C., Sprangle, P.: Electron trapping in self-modulated laser wakefields by raman backscatter. Phys. Rev. Lett. 79(20), 3909–3912 (1997)ADSCrossRefGoogle Scholar
- 45.Ting, A., Moore, C.I., Krushelnick, K., Manka, C., Esarey, E., Sprangle, P., Hbbard, R., Burris, H.R., Fischer, R., Baine, M.: Plasma wakefield generation and electron acceleration in a self-modulated laser wakefield accelerator experiment. Phys. Plasmas 4(5), 1889–1899 (1997)ADSCrossRefGoogle Scholar
- 46.Santala, M.I.K., Najmudin, Z., Clark, E.L., Tatarakis, M., Krushelnick, K., Dangor, A.E., Malka, V., Faure, J., Allott, R., Clarke, R.J.: Observation of a hot highcurrent electron beam from a self-modulated laser wakefield accelerator. Phys. Rev. Lett. 86(7), 1227–1230 (2001)ADSCrossRefGoogle Scholar
- 47.Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M., Burgy, F., Chambaret, J.-P., Chemin, J.-F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.-P., Scheurer, J.-N., Walton, B., Dangor, A.E.: Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298(5598), 1596–1600 (2002)ADSCrossRefGoogle Scholar
- 48.Esarey, E., Sprangle, P., Krall, J., Ting, A.: Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24(2), 252 (1996)ADSCrossRefGoogle Scholar
- 49.Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 56(3), 219 (1985)ADSCrossRefGoogle Scholar
- 50.Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., Pogosova, A.A., Ramazashvili, R.R.: Resonant excitation of wakefields by a laser pulse in a plasma. JETP Lett. 55, 571–576 (1992)ADSGoogle Scholar
- 51.Antonsen, T.M., Mora, P.: Self-focusing and raman scattering of laser pulses in tenuous plasmas. Phys. Rev. Lett. 69(15), 2204–2207 (1992)ADSCrossRefGoogle Scholar
- 52.Esarey, E., Sprangle, P., Krall, J., Ting, A., Joyce, G.: Optically guided laser wakefield acceleration. Phys. Fluids B: Plasma Phys. 5(7), 2690–2697 (1993)CrossRefGoogle Scholar
- 53.Litvak, A.G.: Finite-amplitude wave beams in a magnetoactive plasma. Sov Phys. JETP 30, 344 (1970)ADSGoogle Scholar
- 54.Max, C.E., Arons, J., Langdon, A.B.: Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33(4), 209–212 (1974)ADSCrossRefGoogle Scholar
- 55.Tajima, T.: High energy laser plasma accelerators. Laser Part Beam 3(4), 351–413 (1985)ADSCrossRefGoogle Scholar
- 56.Barnes, D.C., Kurki-Suonio, T., Tajima, T.: Laser self-trapping for the plasma fiber accelerator. IEEE Trans. Plasma Sci. 15(2), 154–160 (1987)ADSCrossRefGoogle Scholar
- 57.Sprangle, P., Esarey, E., Ting, A., Joyce, G.: Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53(22), 2146–2148 (1988)ADSCrossRefGoogle Scholar
- 58.Forslund, D.W., Kindel, J.M., Lindman, E.L.: Theory of stimulated scattering processes in laser-irradiated plasmas. Phys. Fluids 18(8), 1002–1016 (1975)ADSCrossRefGoogle Scholar
- 59.Mori, W.B., Decker, C.D., Hinkel, D.E., Katsouleas, T.: Raman forward scattering of short-pulse high-intensity lasers. Phys. Rev. Lett. 72(10), 1482–1485 (1994)ADSCrossRefGoogle Scholar
- 60.Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-ter Vehn, J., Pretzler, G., Thirolf, P., Habs, D., Witte, K.J.: Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83(23), 4772–4775 (1999)ADSCrossRefGoogle Scholar
- 61.Geissler, M., Schreiber, J., Meyer-Ter-Vehn, J.: Bubble acceleration of electrons with few-cycle laser pulses. New J. Phys. 8, 186 (2006)ADSCrossRefGoogle Scholar
- 62.Pukhov, A., Meyer-Ter-Vehn, J.: Laser wake field acceleration: the highly nonlinear broken-wave regime. Appl. Phys. B 74, 355 (2002)ADSCrossRefGoogle Scholar
- 63.Lu, W., Huang, C., Zhou, M., Mori, W.B., Katsouleas, T.: Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96(16), 165002 (2006)ADSCrossRefGoogle Scholar
- 64.Tsung, F.S., Lu, W., Tzoufras, M., Mori, W.B., Joshi, C., Vieira, J.M., Silva, L.O., Fonseca, R.A.: Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25 TW lasers. Phys. Plasmas 13(5), 056708 (2006)ADSCrossRefGoogle Scholar
- 65.Gordienko, S., Pukhov, A.: Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 12, 043109 (2005)ADSCrossRefGoogle Scholar
- 66.Pukhov, A., Gordienko, S.: Bubble regime of wake field acceleration: similarity theory and optimal scalings. Phil. Trans. R. Soc. A 364, 623 (2006)ADSCrossRefGoogle Scholar
- 67.Hafz, N.A.M., Jeong, T.M., Choi, I.W., Lee, S.K., Pae, K.H., Kulagin, V.K., Sung, J.H., Yu, T.J., Hong, K.-H., Hosokai, T., Cary, J.R., Ko, D.-K., Lee, J.: Stable generation of GeV-class electron beams from self-guided laser-plasma channels. Nat. Phot. 2, 571 (2008)CrossRefGoogle Scholar
- 68.Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy F., Malka, V. : A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541 (2004)ADSCrossRefGoogle Scholar
- 69.Geddes, C.G.R. et al.: High quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538 (2004)ADSCrossRefGoogle Scholar
- 70.Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R., Krushelnick, K.: Monoenergetic beams of relativistic electrons from intense laser plasma interactions. Nature 431, 535 (2004)ADSCrossRefGoogle Scholar
- 71.Hidding, B., Amthor, K.-U., Liesfeld, B., Schwoerer, H., Karsch, S., Geissler, M., Veisz, L., Schmid, K., Gallacher, J.G., Jamison, S.P., Jaroszynski, D., Pretzler, G., Sauerbrey, R.: Generation of quasimonoenergetic electron bunches with 80-fs laser pulses. Phys. Rev. Lett. 96(10), 105004 (2006)ADSCrossRefGoogle Scholar
- 72.Leemans, W.P., Nagler, B., Gonsalves, A.J., Toth C, s., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B., Hooker, S.M.: Gev electron beams from a centimetre-scale accelerator. Nature Phys. 2, 696 (2006)ADSCrossRefGoogle Scholar
- 73.Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y., Malka, V.: Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737 (2006)ADSCrossRefGoogle Scholar
- 74.Rechatin, C., Faure, J., Ben-Ismail, A., Lim, J., Fitour, R., Specka, A., Videau, H., Tafzi, A., Burgy, F., Malka, V.: Controlling the phase-space volume of injected electrons in a laser-plasma accelerator. Phys. Rev. Lett. 102(16), 164801 (2009)ADSCrossRefGoogle Scholar
- 75.Osterhoff, J., Popp, A., Major Z, s., Marx, B., Rowlands-Rees, T.P., Fuchs, M., Geissler, M., Hörlein, R., Hidding, B., Becker, S., Peralta, E.A., Schramm, U., Grüner, F., Habs, D., Krausz, F., Hooker, S.M., Karsch, S.: Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-stateflow gas cell. Phys. Rev. Lett. 101(8), 085002 (2008)ADSCrossRefGoogle Scholar
- 76.Tavella, F., Nomura, Y., Veisz, L., Pervak, V., Marcinkevičius, A., Krausz, F.: Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier. Opt. Lett. 32(15), 2227–2229 (2007)ADSCrossRefGoogle Scholar
- 77.Mangles, S.P.D., Walton, B.R., Tzoufras, M., Najmudin, Z., Clarke, R.J., Dangor, A.E., Evans, R.G., Fritzler, S., Gopal, A., Hernandez-Gomez, C., Mori, W.B., Rozmus, W., Tatarakis, M., Thomas, A.G.R., Tsung, F.S., Wei, M.S., Krushelnick, K.: Electron acceleration in cavitated channels formed by a petawatt laser in low-density plasma. Phys. Rev. Lett. 94(24), 245001 (2005)ADSCrossRefGoogle Scholar
- 78.Malka, V., Faure, J., Glinec, Y., Pukhov, A., Rousseau, J.-P.: Monoenergetic electron beam optimization in the bubble regime. Phys. Plasmas 12(5), 056702 (2005)ADSCrossRefGoogle Scholar
- 79.Geddes, C.G.R., Toth, Cs., van Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J., Leemans, W.P.: Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma accelerators. Phys. Plasmas 12, 056709 (2005)ADSCrossRefGoogle Scholar
- 80.Hosokai, T., Kinoshita, T., Ohkubo, T., Maekawa, A., Uesaka, M., Zhidkov, A., Yamazaki, A., Kotaki, H., Kando, M., Nakajima, K., Bulanov, S.V., Tomassini, P., Giulietti, A., Giulietti, D.: Observation of strong correlation between quasimonoenergetic electron beam generation by laser wakefield and laser guiding inside a preplasma cavity. Phys. Rev. E 73(3), 036407 (2006)ADSCrossRefGoogle Scholar
- 81.Maksimchuk, A., Reed, S., Bulanov, S.S., Chvykov, V., Kalintchenko, G., Matsuoka, T., McGuffey, C., Mourou, G., Naumova, N., Nees, J., Rousseau, P., Yanovsky, V., Krushelnick, K., Matlis, N.H., Kalmykov, S., Shvets, G., Downer, M.C., Vane, C.R., Beene, J.R., Stracener, D., Schultz, D.R.: Studies of laser wakefield structures and electron acceleration in underdense plasmas. Phys. Plasmas 15(5), 056703 (2008)ADSCrossRefGoogle Scholar
- 82.Yamazaki, A., Kotaki, H., Daito, I., Kando, M., Bulanov, S.V., Esirkepov, T.Zh., Kondo, S., Kanazawa, S., Homma, T., Nakajima, K., Oishi, Y., Nayuki, T., Fujii, T., Nemoto, K.: Quasi-monoenergetic electron beam generation during laser pulse interaction with very low density plasmas. Phys. Plasmas 12(9), 093101 (2005)ADSCrossRefGoogle Scholar
- 83.Masuda, S., Miura, E., Koyama, K., Kato, S., Adachi, M., Watanabe, T., Torii, K., Tanimoto, M.: Energy scaling of monoenergetic electron beams generated by the laser-driven plasma based accelerator. Phys. Plasmas 14(2), 023103 (2007)ADSCrossRefGoogle Scholar
- 84.Miura, E., Koyama, K., Kato, S., Saito, N., Adachi, M., Kawada, Y., Nakamura, T., Tanimoto, M.: Demonstration of quasi-monoenergetic electron-beam generation in laser-driven plasma acceleration. Appl. Phys. Lett. 86, 251501 (2005)ADSCrossRefGoogle Scholar
- 85.Hsieh, C.-T., Huang, C.-M., Chang, C.-L., Ho, Y.-C., Chen, Y.-S., Lin, J.-Y., Wang, J., Chen, S.-Y.: Tomography of injection and acceleration of monoenergetic electrons in a laser-wakefield accelerator. Phys. Rev. Lett. 96(9), 095001 (2006)ADSCrossRefGoogle Scholar
- 86.Leemans, W.P., Geddes, C.G.R., Faure, J., Tóth, Cs., van Tilborg, J., Schroeder, C.B., Esarey, E., Fubiani, G., Auerbach, D., Marcelis, B., Carnahan, M.A., Kaindl, R.A., Byrd, J., Martin, M.C.: of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 91(7), 074802 (2003)ADSCrossRefGoogle Scholar
- 87.Schroeder, C.B., Esarey, E., van Tilborg, J., Leemans, W.P.: Theory of coherent transition radiation generated at a plasma-vacuum interface. Phys. Rev. E 69(016501), (2004)Google Scholar
- 88.van Tilborg, J., Schroeder, C.B., Filip, C.V., Tóth, Cs., Geddes, C.G.R., Fubiani, G., Huber, R., Kaindl, R.A., Esarey, E., Leemans, W.P.: Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. Phys. Rev. Lett. 96(1), 014801 (2006)ADSCrossRefGoogle Scholar
- 89.Butler, A., Gonsalves, A.J., McKenna, C.M., Spence, D.J., Hooker, S.M., Sebban, S., Mocek, T., Bettaibi, I., Cros, B.: Demonstration of a collisionally excited optical-field-ionization XUV laser driven in a plasma waveguide. Phys. Rev. Lett. 91(20), 205001 (2003)ADSCrossRefGoogle Scholar
- 90.Rousse, A., Phuoc, K.T., Shah, R., Pukhov, A., Lefebvre, E., Malka, V., Kiselev, S., Burgy, F., Rousseau, J.-P., Umstadter, D., Hulin, D.: Production of a KeV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93(13), 135005 (2004)ADSCrossRefGoogle Scholar
- 91.Phuoc, K.T., Burgy, F., Rousseau, J.-P., Malka, V., Rousse, A., Shah, R., Umstadter, D., Pukhov, A., Kiselev, S.: Laser based synchrotron radiation. Phys. Plasmas, 12(2), 023101 (2005)ADSCrossRefGoogle Scholar
- 92.Phuoc, K.T., Corde, S., Shah, R., Albert, F., Fitour, R., Rousseau, J.-P., Burgy, F., Mercier, B., Rousse, A.: Imaging electron trajectories in a laser-wakefield cavity using betatron X-ray radiation. Phys. Rev. Lett. 97(22), 225002 (2006)ADSCrossRefGoogle Scholar
- 93.Kneip, S., Nagel, S.R., Bellei, C., Bourgeois, N., Dangor, A.E., Gopal, A., Heathcote, R., Mangles, S.P.D., Marquès, J.R., Maksimchuk, A., Nilson, P.M., Phuoc, K.Ta., Reed, S., Tzoufras, M., Tsung, F.S., Willingale, L., Mori, W.B., Rousse, A., Krushelnick, K., Najmudin, Z.: Observation of synchrotron radiation from electrons accelerated in a Petawatt-laser-generated plasma cavity. Phys. Rev. Lett. 100(10), 105006 (2008)ADSCrossRefGoogle Scholar
- 94.Albert, F., Shah, R., Phuoc, K.T., Fitour, R., Burgy, F., Rousseau, J.-P., Tafzi, A., Douillet, D., Lefrou, T., Rousse, A.: Betatron oscillations of electrons accelerated in laser wakefields characterized by spectral X-ray analysis. Phys. Rev. E 77(5), 056402 (2008)ADSCrossRefGoogle Scholar
- 95.Krushelnick, K., Clark, E.L., Najmudin, Z., Salvati, M., Santala, M.I.K., Tatarakis, M., Dangor, A.E., Malka, V., Neely, D., Allott, R., Danson, C.: Multimev ion production from high-intensity laser interactions with underdense plasmas. Phys. Rev. Lett. 83(4), 737–740 (1999)ADSCrossRefGoogle Scholar
- 96.Willingale, L., Mangles, S.P.D, Nilson, P.M, Clarke, R.J, Dangor, A.E, Kaluza, M.C, Karsch, S., Lancaster, K.L, Mori, W.B, Najmudin, Z., Schreiber, J., Thomas, A.G.R, Wei, M.S, Krushelnick, K.: Collimated multi-mev ion beams from high-intensity laser interactions with underdense plasma. Phys. Rev. Lett. 96(24), 245002 (2006)ADSCrossRefGoogle Scholar
- 97.Faure, J., Glinec, Y., Santos, J.J., Ewald, F., Rousseau, J.-P., Kiselev, S., Pukhov, A., Hosokai, T., Malka, V.: Observation of laser-pulse shortening in nonlinear plasma waves. Phys. Rev. Lett. 95(20), 205003 (2005)ADSCrossRefGoogle Scholar
- 98.Kando, M., Fukuda, Y., Pirozhkov, A.S., Ma, J., Daito, I., Chen, L.-M., Esirkepov, T.Zh., Ogura, K., Homma, T., Hayashi, Y., Kotaki, H., Sagisaka, A., Mori, M., Koga, J.K., Daido, H., Bulanov, S.V., Kimura, T., Kato, Y., Tajima, T.: Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield. Phys. Rev. Lett. 99(13), 135001 (2007)ADSCrossRefGoogle Scholar
- 99.Pegoraro, F., Bulanov, S.V., Califano, F., Esirkepov, T.Zh., Lontano, M., Meyer-ter Vehn, J., Naumova, N.M., Pukhov, A.M., Vshivkov, V.A.: Magnetic fields from high-intensity laser pulses in plasmas. Plasma Phys. Control Fusion 39, 261–272 (1997)CrossRefGoogle Scholar
- 100.Bulanov, S.S., Esirkepov, T.Zh., Kamenets, F.F., Pegoraro, F.: Single-cycle highintensity electromagnetic pulse generation in the interaction of a plasma wakefieldwith regular nonlinear structures. Phys. Rev. E (Stat, Nonlinear, Soft Matter Phys.) 73(3), 036408 (2006)ADSCrossRefGoogle Scholar
- 101.Dun, H., Mattes, B.L., Stevenson, D.A.: The gas dynamics of a conical nozzle molecular beam sampling system. Chem. Phys. 38, 161 (1979)CrossRefGoogle Scholar
- 102.Knuth, E.L.: Size correlations for condensation clusters produced in free-jet expansions. J. Chem. Phys. 107(21), 9125–9132 (1997)ADSCrossRefGoogle Scholar
- 103.Ditmire, T., Smith, R.A.: Short-pulse laser interferometric measurement of absolute gas densities from a cooled gas jet. Opt. Lett. 23(8), 618 (1998)ADSCrossRefGoogle Scholar
- 104.Smith, R.A., Ditmire, T., Tisch, J.W.G.: Characterization of a cryogenically cooled high-pressure gas laser/cluster interaction experiments. Rev. Sci. Inst. 69(11), 3798 (1998)ADSCrossRefGoogle Scholar
- 105.Khoukaz, A., Lister, T., Quentmeier, C., Santo, R., Thomas, C.: Systematic studies on hydrogen cluster beam production. Eur. Phys. J. D 5, 275 (1999)ADSGoogle Scholar
- 106.Pedemonte, L., Bracco, G., Tatarek, R.: Theoretical and experimental study of he free-jet expansions. Phys. Rev. A 59(4), 3084 (1999)ADSCrossRefGoogle Scholar
- 107.Even, U., Jortner, J., Noy, D., Lavie, N., Cossart-Magos, C.: Cooling of large molecules below 1 k and He clusters formation. J. Chem. Phys. 112(18), 8068 (2000)ADSCrossRefGoogle Scholar
- 108.Parra, E., McNaught, S.J., Milchberg, H.M.: Characterization of a cryogenic, high-pressure gas jet operated in the droplet regime. Rev. Sci. Instrum. 73(2), 468–475 (2002)ADSCrossRefGoogle Scholar
- 109.Kim, K.Y., Kumarappan, V., Milchberg, H.M.: Measurement of the average size and density of clusters in a gas jet. Appl. Phys. Lett. 83(15), 3210–3212 (2003)ADSCrossRefGoogle Scholar
- 110.Lawrence, L.S., French, R.J.: Electron diffraction investigation of pulsed supersonic jets. Rev. Sci. Inst. 60(7), 1223 (1989)ADSGoogle Scholar
- 111.Pronko, J., Kohler, D., Chapman, I.V., Bardin, T.T., Filbert, P.C., Hawley, J.D.: Density measurement of a pulsed supersonic gas jet using nuclear scattering. Rev. Sci. Inst. 64, 1744 (1993)ADSCrossRefGoogle Scholar
- 112.Perry, M.D., Darrow, C., Coverdale, C., Crane, J.K.: Measurement of the local electron density by means of stimulated raman scattering in a laser-produced gas jet plasma. Opt. Lett. 17(7), 523 (1992)ADSCrossRefGoogle Scholar
- 113.Lompré, L.A., Ferray, M., L’Huillier, A., Li, X.F., Mainfray, G.: Optical determination of the characteristics of a pulsed gas jet. J. Appl. Phys. 63(5), 1791 (1988)ADSCrossRefGoogle Scholar
- 114.Tejeda, G., Maté, B., Fernández-Sánchez, J.M., Montero, S.: Temperature and density mapping of supersonic jet expansions using linear raman spectroscopy. Phys. Rev. Lett. 76(1), 34–37 (1996)ADSCrossRefGoogle Scholar
- 115.Winckler, J.: The mach interferometer applied to studying an axially symmetric supersonic air jet. Rev. Sci. Instrum. 19(5), 307–322 (1948)ADSCrossRefGoogle Scholar
- 116.Behjat, A., Tallents, G.J., Neely, D.: The characterization of a high-density gas jet. J. Phys. D: Appl. Phys. 30, 2872 (1997)ADSCrossRefGoogle Scholar
- 117.Auguste, T., Bougeard, M., Caprin, E., D’Oliveira, P., Monot, P.: Characterization of a high-density large scale pulsed gas jet for laser–gas interaction experiments. Rev. Sci. Instrum. 70(5), 2349–2354 (1999)ADSCrossRefGoogle Scholar
- 118.Azambuja\(\dag,\) R., Eloy, M., Figueira, G., Neely, D.: Three-dimensional characterization of high-density non-cylindrical pulsed gas jets. J. Phys. D: Appl. Phys. 32, 35 (1999)Google Scholar
- 119.Malka, V., Coulaud, C., Geindre, J.P., Lopez, V., Najmudin, Z., Neely, D., Amiranoff, F.: Characterization of neutral density profile in a wide range of pressure of cylindrical pulsed gas jets. Rev. Sci. Instrum. 71(6), 2329–2333 (2000)ADSCrossRefGoogle Scholar
- 120.Kim, C., Kim, G.-H., Kim, J.-U., Ko, I.S., Suk, H.: Characterizations of symmetry and asymmetry high-density gas jets without abel inversion. Rev. Sci. Instrum. 75(9), 2865–2868 (2004)ADSCrossRefGoogle Scholar
- 121.Semushin, S., Malka, V.: High density gas jet nozzle design for laser target production. Rev. Sci. Inst. 72(7), 2961 (2001)ADSCrossRefGoogle Scholar
- 122.Hosokai T., et al. Supersonic gas jet target for generation of relativistic electrons with 12 TW-50 fs laser pulse. In: Proceedings of EPAC 2002, pp. 981–983, (2002)Google Scholar
- 123.Janson S.W., Helvajian H., Breuer K. Mems, Microengineering and aerospace systems. AIAA (99–3802), (1999)Google Scholar
- 124.Hitt, D.L., Zakrzwski, C.M., Thomas, M.A.: Mems-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition. Smart Mater. Struct. 10, 1163 (2001)ADSCrossRefGoogle Scholar
- 125.Xie, C.: Characteristics of micronozzle gas flows. Phys. Fluids 19(3), 037102 (2007)ADSCrossRefGoogle Scholar
- 126.Broc, A., de Benedictis, S., Dilecce, G., Vigliotti, M., Sharafutdinov, R.G., Skovorodko, P.A.: Experimental and numerical investigation of an O2/NO supersonic free jet expansion. J. Fluid Mech. 500, 211 (2004)ADSzbMATHCrossRefGoogle Scholar
- 127.Boyd, I.D., Beattie, D.R., Cappelli, M.A.: Numerical and experimental investigations of low-density supersonic jets of hydrogen. J. Fluid Mech. 280, 41 (1994)ADSCrossRefGoogle Scholar
- 128.Boyd, I.D., Chen, G., Candler, G.: Predicting failure of the continuum fluid equations in translational hypersonic flows. Phys. Fluids 7(1), 210 (1995)ADSzbMATHCrossRefGoogle Scholar
- 129.Mo H., Lin C., Gokaltun S., Skudarnov P.V.: Numerical study of axisymmetric gas flow in conical micronozzles by DSMC an continuum methods. AIAA (2006–991) (2006)Google Scholar
- 130.Agarwal, R.K.: Beyond Navier-Stokes: Burnett equations for flows in the continuum-transition regime. Phys. Fluids 13(10), 3061–3085 (2001)ADSCrossRefGoogle Scholar
- 131.Pandey, B.P., Raju, R., Roy, S., Finite element model of fluid flow inside a micro thruster. AIAA (2002–5733),(2002)Google Scholar
- 132.Gadepalli, V.V.V., Lin, C. NavierSstokes modeling of gas flows in a de-laval micronozzle. AIAA (2006–1425), (2006)Google Scholar
- 133.Hao, P.-F., Ding, Y.-T., Yao, Z.-H., He, F., Zhu, K.-Q.: Size effect on gas flow in micro nozzles. J. Micromech. Microeng. 15, 2069 (2005)ADSCrossRefGoogle Scholar
- 134.Alexeenko, A.A., Fedosov, D.A., Gimelshein, S.F., Levin, D.A., Collins, R.J.: Transient heat transfer and gas flow in a mems-based thruster. J. Microelectromech 15(1), 181 (2006)CrossRefGoogle Scholar
- 135.Louisos, W.F., Hitt, D.L.: Optimal expansion angle for viscous supersonic flow in 2-d micro nozzles. AIAA, (2005–5032), (2005)Google Scholar
- 136.Alexeenko, A.A., Levin, D.A., Gimelshein, S.F., Collins, R.J., Reed, B.D.: Numerical modeling of axisymmetric and three-dimensional flows in microelectromechanical systems nozzles. AIAA J. 40(5), 897 (2002)ADSCrossRefGoogle Scholar
- 137.Mate, B., Graur, I.A., Elizarova, T., Chirokov, I., Tejeda, G., Fernandez, J.M., Montero, S.: Experimental and numerical investigation of an axisymmetric supersonic jet. J. Fluid Mech. 426, 177 (2001)ADSzbMATHCrossRefGoogle Scholar
- 138.Ketsdever, A., Wadsworth, D.C., Wapner, P.G., Ivanov, M.S., Markelov, G.N.: Fabrication and predicted performance of conical delaval micronozzles. AIAA (99–2724) (1999)Google Scholar