Skip to main content

Advances in Biofilm Mechanics

  • Chapter
  • First Online:
Biofilm Highlights

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 5))

Abstract

A knowledge of the mechanical properties of bacterial biofilms is required to more fully understand how a biofilm will physically respond, and adapt, to the physical forces, such as those caused by fluid flow or particle or bubble impingement, acting upon it. This is particularly important since biofilms are problematic in a wide diversity of scenarios and spatial and temporal scales and many control strategies designed to remove biofilms include a mechanical component such as fluid flow, particle or bubble impingement or a physical contact with the surface generated by scraping or brushing. Knowing when, and how, a biofilm might fail (through adhesive or cohesive failure) will allow better prediction of accumulation and biomass detachment, key processes required in the understanding of the structure and function of biofilm systems. However, the measurements of mechanical properties are challenging. Biofilms are living systems and they readily desiccate if removed from the liquid medium, it is not clear how quickly their mechanical properties might change when removed from their indigenous environment into a testing environment. They are also very thin and are inherently attached to a surface. They cannot be formed into standard test coupons such as plastics or solids, and cannot readily be poured or placed into conventional viscometers or rheometers, such as liquids and gels. Measured parameters such as the elastic and shear modulus, adhesive strength or tensile strength are sparse but are increasingly appearing in the literature. There is a large range of reported values for these properties, although there is general agreement that biofilms are viscoelastic. Biofilms have been assessed with various experimental methods depending on the desired characteristic and available equipment. The aforementioned challenges and lack of standard methods or equipment for testing attached biofilms have led to the development of many creative methods to tease out aspects of biofilm mechanical properties. In this paper, we review some of the more common techniques and highlight some recent results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal S, Hozalski RM (2010) Determination of biofilm mechanical properties from tensile tests performed using a micro-cantilever method, 1029–2454. Biofouling: J Bioadhesion Biofilm Res 26(4):479–486

    Article  Google Scholar 

  • Aggarwal S, Poppele EH, Hozalski RM (2009) Development and testing of a novel microcantilever technique for measuring the cohesive strength of intact biofilms. Biotechnol Bioeng 105(5):924–934

    Google Scholar 

  • Ahimou F, Semmens MJ, Novak PJ, Haugstad G (2007) Biofilm cohesiveness measurement using a novel atomic force microscopy methodology. Appl Environ Microbiol 73(9):2897–2904

    Article  PubMed  CAS  Google Scholar 

  • Aravas N, Laspidou CS (2008) On the calculation of the elastic modulus of a biofilm streamer. Biotechnol Bioeng 101(1):196–200

    Article  PubMed  CAS  Google Scholar 

  • Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188(21):7344–7353

    Article  PubMed  CAS  Google Scholar 

  • Bartowsky EJ, Henschke PA (2008) Acetic acid bacteria spoilage of bottled red wine. Int J Food Microbiol 125(1):60–70

    Article  PubMed  CAS  Google Scholar 

  • Beech IB, Sunner JA, Hiraoka K (2005) Microbe-surface interactions in biofouling and biocorrosion processes. Int Microbiol 8(3):157–168

    PubMed  CAS  Google Scholar 

  • Bradshaw DJ, Marsh PD (1999) Use of continuous flow techniques in modeling dental plaque biofilms. In: Doyle RJ (ed) Methods in enzymology, vol 310, Biofilms., pp 279–296

    Google Scholar 

  • Cense AW, Van Dongen MEH, Gottenbos B, Nuijs AM, Shulepov SY (2006a) Removal of biofilms by impinging water droplets. J Appl Phys 100(12):124701–124708

    Article  Google Scholar 

  • Cense AW, Peeters EAG, Gottenbos B, Baaijens FPT, Nuijs AM, van Dongen MEH (2006b) Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device. J Microbiol Meth 67(3):463–472

    Article  CAS  Google Scholar 

  • Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plast 24(10):1642–1693

    Article  CAS  Google Scholar 

  • Chen MJ, Zhang Z, Bott TR (1998) Direct measurement of the adhesive strength of biofilms in pipes by micromanipulation. Biotechnol Tech 12(12):875–880

    Article  CAS  Google Scholar 

  • Chen MJ, Zhang Z, Bott TR (2005) Effects of operating conditions on the adhesive strength of Pseudomonas fluorescens biofilms in tubes. Colloids Surf B 43(2):61–71

    Article  CAS  Google Scholar 

  • Chew JYM, Paterson WR, Wilson DI (2004a) Fluid dynamic gauging for measuring the strength of soft deposits. J Food Eng 65(2):175–187

    Article  Google Scholar 

  • Chew JYM, Cardoso SSS, Paterson WR, Wilson DI (2004b) CFD studies of dynamic gauging. Chem Eng Sci 59(16):3381–3398

    Article  CAS  Google Scholar 

  • Coetser SE, Cloete TE (2005) Biofouling and biocorrosion in industrial water systems. Crit Rev Microbiol 31(4):213–232

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  PubMed  CAS  Google Scholar 

  • Couarraze G, Grossiord J (1991) Initiation à la rhéologie, 2nd ed, Lavoisier – Tec & Doc, Paris

    Google Scholar 

  • Coufort C, Derlon N, Ochoa-Chaves J, Liné A, Paul E (2007) Cohesion and detachment in biofilm systems for different electron acceptor and donors. Water Sci Technol 55(8–9):421–428

    PubMed  CAS  Google Scholar 

  • Davies DG, Marques CN (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191(5):1393–1403

    Article  PubMed  CAS  Google Scholar 

  • de Beer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotech Bioeng 43:1131–1138

    Article  Google Scholar 

  • Derlon N, Masse´ A, Escudie´ R, Bernet N, Paul E (2008) Stratification in the cohesion of biofilms grown under various environmental conditions. Water Res 42(8–9):2102–2110

    Article  PubMed  CAS  Google Scholar 

  • Dunsmore BC, Jacobsen A, Hall-Stoodley L, Bass CJ, Lappin-Scott HM, Stoodley P (2002) The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms. J Ind Microbiol Biotechnol 29(6):347–353

    Article  PubMed  CAS  Google Scholar 

  • Godon J-J, Zumstein E, Dabert P, Habouzit F, Moletta R (1997) Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63(7):2802–2813

    PubMed  CAS  Google Scholar 

  • Grédiac M, Pierron F, Avril S, Toussaint E (2006) The virtual fields method for extracting constitutive parameters from full-field measurements: a review. Strain Int J Exp Mech 42:233–253, DOI:dx.doi.org

    Article  Google Scholar 

  • Hohne DN, Younger JG, Solomon MJ (2009) Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms. Langmuir 25(13):7743–7751

    Article  PubMed  CAS  Google Scholar 

  • Klapper I, Rupp CJ, Cargo R, Purvedorj B, Stoodley P (2002) Viscoelastic fluid description of bacterial biofilm material properties. Biotechnol Bioeng 80(3):289–296

    Article  PubMed  CAS  Google Scholar 

  • Körstgens V, Flemming H-C, Wingender J, Borchard W (2001a) Uniaxial compression measurement device for investigation of the mechanical stability of biofilms. J Microbiol Meth 46(1):9–17

    Article  Google Scholar 

  • Körstgens V, Flemming H-C, Wingender J, Borchard W (2001b) Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Sci Technol 43(6):49–57

    PubMed  Google Scholar 

  • Lau PCY, Dutcher JR, Beveridge TJ, Lam JS (2009) Absolute quantitation of bacterial biofilm adhesion and viscoelasticity by microbead force spectroscopy. Biophys J 96(7):2935–2948

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre J, Chaboche JL (1988) Mécanique des matériaux solides, Dunod, 2ème édition

    Google Scholar 

  • Liao Q, Wang Y-J, Wang Y-Z, Zhu X, Tian X, Li J (2010) Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions. Bioresour Technol 101(14):5315–5324

    Article  PubMed  CAS  Google Scholar 

  • Mandel J (1958) Théorie générale de la viscoélasticité linéaire. Cahier du Groupe Français de Rhéologie 3(4):21–35

    CAS  Google Scholar 

  • Mathias JD, Stoodley P (2009) Applying the digital image correlation method to estimate the mechanical properties of bacterial biofilms subjected to a wall shear stress. Biofouling 25(8):695–703

    Article  PubMed  CAS  Google Scholar 

  • Mignot F, Puel JP, Suquet PM (1980) Bifurcation and homogenization. Int J Eng Sci 18(2):409–414

    Article  Google Scholar 

  • Möhle RB, Langemann T, Haesner M, Augustin W, Scholl S, Neu TR, Hempel DC, Horn H (2007) Structure and shear strength of microbial biofilms as determined with confocal laser scanning microscopy and fluid dynamic gauging using a novel rotating disc biofilm reactor. Biotechnol Bioeng 98(4):747–755

    Article  PubMed  Google Scholar 

  • Nowacki W (1965) Théorie du fluage. Eyrolles Ed, Paris, 219p

    Google Scholar 

  • Ohashi A, Harada H (1994) Adhesion strength of biofilm developed in an attached growth reactor. Water Sci Technol 29(10–11):281–288

    CAS  Google Scholar 

  • Ohashi A, Harada H (1996) A novel concept for evaluation of biofilm adhesion strength by applying tensile force and shear force. Water Sci Technol 34(5–6):201–211

    CAS  Google Scholar 

  • Ohashi A, Koyama T, Syutsubo K, Harada H (1999) A novel method for evaluation of biofilm tensile strength resisting erosion. Water Sci Technol 39(7):261–268

    Article  CAS  Google Scholar 

  • Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282

    Article  Google Scholar 

  • Picologlou BF, Zelver N, Characklis WG (1980) Biofilm growth and hydraulic performance. J Hydraulics Division Am Soc Civ Eng 106(HY5):733–746

    Google Scholar 

  • Poppele EH, Hozalski RM (2003) Micro-cantilever method for measuring the tensile strength of biofilms and microbial flocs. J Microbiol Meth 55(3):607–615

    Article  Google Scholar 

  • Rickard AH, McBain AJ, Stead AT, Gilbert P (2004) Shear rate moderates community diversity in freshwater biofilms. Appl Environ Microbiol 70(12):7426–7435

    Article  PubMed  CAS  Google Scholar 

  • Rochex A, Godon J-J, Bernet N, Escudié R (2008) Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities. Water Res 42(20):4915–4922

    Article  PubMed  CAS  Google Scholar 

  • Socransky SS, Haffajee AD (2002) Dental biofilms: difficult therapeutic targets. Periodontol 2000 28(1):12–55

    Article  PubMed  Google Scholar 

  • Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1999a) Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Biotechnol Bioeng 65(1):83–92

    Article  PubMed  CAS  Google Scholar 

  • Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1999b) The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environ Microbiol 1(5):447–455

    Article  PubMed  CAS  Google Scholar 

  • Stoodley P, Wilson S, Hall-Stoodley L, Boyle JD, Lappin-Scott HM, Costerton JW (2001a) Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol 67(12):5608–5613

    Article  PubMed  CAS  Google Scholar 

  • Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I (2002) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29(6):361–367

    Article  PubMed  CAS  Google Scholar 

  • Sutton M, Wolters W, Perters W, Ranson W, McNeill S (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139

    Article  Google Scholar 

  • Taherzadeh D, Picioreanu C, Küttler U, Simone A, Wall WA, Horn H (2010) Computational study of the drag and oscillatory movement of biofilm streamers in fast flows. Biotechnol Bioeng 105(3):600–610

    Article  PubMed  CAS  Google Scholar 

  • Towler BW, Rupp CJ, Cunningham ALB, Stoodley P (2003) Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis. Biofouling 19(5):279–285

    Article  PubMed  Google Scholar 

  • Vinogradov AM, Winston M, Rupp CJ, Stoodley P (2004) Rheology of biofilms formed from the dental plaque pathogen Streptococcus mutans. Biofilms 1:49–56

    Article  Google Scholar 

  • Wagner M, Loy A (2002) Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13(3):218–227

    Article  PubMed  CAS  Google Scholar 

  • Willcock L, Gilbert P, Holah J, Wirtanen G, Allison DG (2000) A new technique for the performance evaluation of clean-inplace disinfection of biofilms. J Ind Microbiol Biotechnol 25(5):235–241

    Article  CAS  Google Scholar 

  • Woolard CR, Irvine RL (1994) Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria. Water Environ Res 66(3):230–235

    Article  CAS  Google Scholar 

  • Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  Google Scholar 

  • Yeung AKC, Pelton R (1996) Micromechanics: a new approach to studying the strength and breakup of flocs. J Colloid Interface Sci 184(2):579–585

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Stoodley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guélon, T., Mathias, JD., Stoodley, P. (2011). Advances in Biofilm Mechanics. In: Flemming, HC., Wingender, J., Szewzyk, U. (eds) Biofilm Highlights. Springer Series on Biofilms, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19940-0_6

Download citation

Publish with us

Policies and ethics