Skip to main content

Neutrophilic Iron-Depositing Microorganisms

  • Chapter
  • First Online:
Biofilm Highlights

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 5))

Abstract

Neutrophilic iron-depositing microorganisms include various groups of bacteria, algae, and protozoa. The most striking feature of these microorganisms is their ability to precipitate ferric iron around their cells and colonies in many different forms. Growth of these microorganisms has various practical implications, for example, formation of iron ore in many parts of the world, aging of water wells, and clogging of drinking water pipes. Morphological description of many genera and species of iron-depositing bacteria by microscopy dates back to the nineteenth century, but only very few pure cultures of bacteria such as Leptothrix discophora and Gallionella ferruginea have been obtained in the last decades. Therefore, little has been known on the physiology or phylogeny of these bacteria.

Using a combination of different cultivation techniques and molecular methods we were able to demonstrate a large diversity of iron-depositing bacteria in natural habitats as well as in drinking water systems. Pure cultures were obtained for many microscopically defined morphotypes belonging to well-known iron-depositing genera such as Leptothrix, Pedomicrobium, Pseudomonas, and Hyphomicrobium. In addition, many cultures isolated were not closely related to known iron bacteria according to phylogenetic analysis. Clones obtained by clone libraries from natural habitats also indicated that known genera of iron-depositing bacteria are much more diverse than assumed so far. With the pure cultures and clones in hand, we are now able to study the physiology of iron-depositing bacteria and their possible role in natural and technical habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aristovskaya TV (1961) Accumulation of iron in breakdown of organomineral humus complexes by microorganisms (in Russian). Dokl Akad Nauk S.S.S.R. 136:954–957

    Google Scholar 

  • Barbic F, Comic L, Pljakic E (2000) Iron and manganese bacteria populations in groundwater sources. Eur Water Manage 3:26–30

    CAS  Google Scholar 

  • Beger H (1949) Beiträge zur Systematik und geographischen Verbreitung der Eisenbakterien. Berichte der deutschen botanischen Gesellschaft 62:7–13

    Google Scholar 

  • Beger H (1952) Leitfaden der Trink- und Brauchwasserhygiene, Schriftenreihe des Vereins für Wasser-, Boden- und Lufthygiene 5. Piscator, Stuttgart

    Google Scholar 

  • Boogerd FC, de Vrind JPM (1987) Manganese oxidation by Leptothrix discophora. J Bact 169:489–494

    PubMed  CAS  Google Scholar 

  • Braun B, Richert I, Szewzyk U (2009) Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe. J Microbiol Meth 79:37–43

    Article  CAS  Google Scholar 

  • Caiazza NC, Lies DP, Newman DK (2007) Phototrophic Fe(II) oxidation promotes organic carbon acquisition by Rhodobacter capsulatus SB1003. Appl Environ Microbiol 73:6150–6158

    Article  PubMed  CAS  Google Scholar 

  • Cholodny N (1924) Zur Morphologie der Eisenbakterien Gallionella und Spirophyllum. Ber Dtsch Bot Ges 42:35–44

    Google Scholar 

  • Cholodny N (1926) Die Eisenbakterien: Beiträge zu einer Monographie, Pflanzenforschung 4

    Google Scholar 

  • Chun J, Rhee M-S, Han J-I, Bae KS (2001) Arthrobacter siderocapsulatus Dubinina and Zhdanov 1975AL is a later subjective synonym of Pseudomonas putida (Trevisan 1889) Migula 1895AL. Int J Syst Evol Microb 51:169–170

    CAS  Google Scholar 

  • Cullimore DR, McCann AE (1978) The identification, cultivation and control of iron bacteria in ground water. In: Skinner FA, Shewan JM (eds) Aquatic microbiology. Academic, New York, pp 1–32

    Google Scholar 

  • de Mendonca MB, Ehrlich M, Cammarota MC (2003) Conditioning factors of iron ochre biofilm formation on geotextile filters. Can Geotech J 40:1225–1234

    Article  Google Scholar 

  • Dorff P (1934) Die Eisenorganismen, Systematik und Morphologie. Pflanzenforschung, Jena 16:1–62

    Google Scholar 

  • Drabkova VG (1971) Iron bacteria in some lakes of the Karelian isthmus. Hydrobiol J 7:21–27

    Google Scholar 

  • Dubinina GA (1978) Mechanism of oxidation of divalent iron and manganese by iron bacteria growing in neutral medium. Mikrobiologiya 47:591–599

    CAS  Google Scholar 

  • Dubinina G, Zhdanov AV (1975) Recognition of iron bacteria “Siderocapsa” as Arthrobacters and description of Arthrobacter siderocapsulatus sp-nov. Int J Syst Bacteriol 25:340–350

    Article  Google Scholar 

  • Ehrenberg CG (1836) Vorläufige Mitteilungen über das Vorkommen fossiler Infusorien und ihre große Verbreitung. In: Poggendorf’s Annalen der Physik und Chemie 38:213-227

    Google Scholar 

  • Ellis D (1919) Iron bacteria. J Soc Chem Ind 38:486

    Google Scholar 

  • Emerson D, Ghiorse WC (1992) Isolation, cultural maintenance, and taxonomy of a sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath. Appl Environ Microbiol 58:4001–4010

    PubMed  CAS  Google Scholar 

  • Emerson D, Ghiorse WC (1993) Ultrastructure and chemical composition of the sheath of Leptothrix discophora SP-6. J Bact 175:7808–7818

    PubMed  CAS  Google Scholar 

  • Emerson D, Revsbech NP (1994a) Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies. Appl Environ Microbiol 60:4022–4031

    PubMed  CAS  Google Scholar 

  • Emerson D, Revsbech NP (1994b) Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: laboratory studies. Appl Environ Microbiol 60:4032–4038

    PubMed  CAS  Google Scholar 

  • Gebers R (1981) Enrichment, isolation, and emended description of Pedomicrobium ferrugineum Aristovskaya and Pedomicrobium manganicum Aristovskaya. Int J Syst Bact 31:302–316

    Article  Google Scholar 

  • Giard A (1882) Sur le Crenothris Kühniana (Rabenhorst) cause de l’infection des eaux de Lille. Comptes rendu Acad. d. So, XCV, pp 247–249

    Google Scholar 

  • Glathe H, Ottow JCG (1972) Ecological and physiological aspects of the mechanism of iron oxidation and ochreous deposit formation: a review. Zbl Bakteriol 127:749–769

    CAS  Google Scholar 

  • Hallbeck L, Pedersen K (1990) Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea. J Gen Microbiol 136:1675–1680

    Google Scholar 

  • Hallbeck L, Pedersen K (1991) Autotrophic and mixotrophic growth of Gallionella ferruginea. J Gen Microbiol 137:2657–2661

    CAS  Google Scholar 

  • Hallbeck L, Pedersen K (1995) Benefits associated with the stalk of Gallionella ferruginea evaluated by comparison of a stalk-forming and a non-stalk-forming strain and biofilm studies in situ. Microb Ecol 30:257–268

    Article  Google Scholar 

  • Hanert H (1968) Untersuchungen zur Isolierung, Stoffwechselphysiologie und Morphologie von Gallionella ferruginea Ehrenberg. Arch Mikrobiol 60:348–376

    Google Scholar 

  • Hässelbarth U, Lüdemann D (1967a) Die biologische Verockerung von Brunnen durch Massenentwicklung von Eisen- und Manganbakterien. Bohrtechnik Brunnenbau Rohrleitungsbau 18:363–368

    Google Scholar 

  • Hässelbarth U, Lüdemann D (1967b) Die biologische Verockerung von Brunnen durch Massenentwicklung von Eisen- und Manganbakterien (II). Bohrtechnik Brunnenbau Rohrleitungsbau 18:401–406

    Google Scholar 

  • Hässelbarth U, Lüdemann D (1972) Biological incrustation of wells due to mass development of iron and manganese bacteria. Wat Treatm Exam 21:20–29

    Google Scholar 

  • Hirsch P, Conti SF (1964a) Biology of budding bacteria II. Growth and nutrition of Hyphomicrobium spp. Arch Microbiol 48:358–367

    CAS  Google Scholar 

  • Hirsch P, Conti SF (1964b) Biology of budding bacteria. I. Enrichment, isolation and morphology of Hyphomicrobium spp. Arch Mikrobiol 48:339–357

    Article  PubMed  CAS  Google Scholar 

  • Jones JG (1981) The population ecology of iron bacteria (genus Ochrobium) in a stratified eutrophic lake. J Gen Microbiol 125:85–93

    Google Scholar 

  • Kämpfer P (1997) Detection and cultivation of filamentous bacteria from activated sludge. FEMS Microbiol Ecol 23:169–181

    Article  Google Scholar 

  • Kappler A, Newman DK (2004) Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta 68:1217–1226

    Article  CAS  Google Scholar 

  • Kappler A, Pasquero C, Konhauser KO, Newman DK (2005a) Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33:865–868

    Article  CAS  Google Scholar 

  • Kappler A, Schink B, Newman DK (2005b) Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1. Geobiology 3:235–245

    Article  CAS  Google Scholar 

  • Kützing FT (1843) Phytologia generalis oder Anatomie. Physiologie uns Systemkunde der Tange, Leipzig, FA Brockhaus

    Google Scholar 

  • Lieske R (1919) Zur Ernährungsphysiologie der Eisenbakterien. Zbl Bakteriol 39:369

    Google Scholar 

  • Lünsdorf H, Brümmer I, Timmis KN, Wagner-Döbler I (1997) Metal selectivity of in situ microcolonies in biofilms of the Elbe river. J Bact 179:31–40

    PubMed  Google Scholar 

  • Luttersczekalla S (1990) Lithoautotrophic growth of the iron bacterium Gallionella ferruginea with thiosulfate or sulfide as energy source. Arch Microbiol 154:417–421

    Article  Google Scholar 

  • Mettenheimer C (1856–1858) Ueber Leptothrix ochracea u. ihre Beziehungen zu Gallionella ferruginea. Abhandl. der Senckenberg Naturforsch. Gesellsch. 10

    Google Scholar 

  • Molisch H (1910) Die Eisenbakterien. Gustav Fischer, Jena

    Google Scholar 

  • Mouchet P (1992) From conventional to biological removal of iron and manganese in France. JAWWA 84:158–167

    CAS  Google Scholar 

  • Mulder EG, van Veen WL (1963) Investigations on the Sphaerotilus-Leptothrix group. Ant V Leeuwenhoek 29:121–153

    Article  CAS  Google Scholar 

  • Naumann E (1921) Untersuchungen über die Eisenorganismen Schwedens. I. Die Erscheinungen der Sideroplastie in den Gewässern des Teichgebiets Aneboda. Kungl Svenska Vetenskapsakademiens Handlingar 62(4)

    Google Scholar 

  • Naumann E (1929) Die eisenspeichernden Bakterien. Kritische Übersicht der bisher bekannten Formen. Zbl Bakteriol 78:512–515

    CAS  Google Scholar 

  • Naumann E (1930) Die Eisenorganismen. Grundlinien der limnologischen Fragestellung. Int Revue d ges Hydrobiol u Hydrographie 24:81–96

    Article  Google Scholar 

  • Präve P (1957) Untersuchungen über die Stoffwechselphysiologie des Eisenbakteriums Leptothrix ochracea Kützing. Arch Mikrobiol 27:33–62

    Article  PubMed  Google Scholar 

  • Ralph DE, Stevenson JM (1995) The role of bacteria in well clogging. Wat Res 29:365–369

    Article  CAS  Google Scholar 

  • Ridgway HF, Means EG, Olson BH (1981) Iron bacteria in drinking water distribution system: elemental analysis of Gallionella stalks, using X-ray energy-dispersive microanalysis. Appl Environ Microbiol 41:288–297

    PubMed  CAS  Google Scholar 

  • Schmidt WD, Overbeck J (1984) Studies of “iron bacteria” from Lake Pluss I. Morphology, finestructure and distribution of Metallogenium sp. and Siderocapsa geminata. Z Allg Mikrobiol 24:329–339

    Article  Google Scholar 

  • Siering PL, Ghiorse WC (1997) Development and application of 16S rRNA-targeted probes for detection of iron- and manganese-oxidizing sheathed bacteria in environmental samples. Appl Environ Microbiol 63:644–651

    PubMed  CAS  Google Scholar 

  • Skuja H (1948) Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symb Bot Ups 9(3):1–399

    Google Scholar 

  • Skuja H (1956) Taxonomische und biologische Studien über das Phytoplankton schwedischer Binnengewässer. Nova Acta Reg Soc Sci Uppsala IV 16:1–404

    Google Scholar 

  • Smith S (1982) Culture methods for the enumeration of iron bacteria from water well samples: a critical literature-review. Ground Water 20:482–485

    Article  Google Scholar 

  • Spring S, Kämpfer P, Ludwig W, Schleifer KH (1996) Polyphasic characterization of the genus Leptothrix: New descriptions of Leptothrix mobilis sp. nov. and Leptothrix discophora sp. nov. nom. rev. and emended description of Leptothrix cholodnii emend. Syst Appl Microbiol 19:634–643

    Article  CAS  Google Scholar 

  • Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic nitrate-depended microbial oxidation of ferrous iron. Appl Environ Microbiol 62:1458–1460

    PubMed  CAS  Google Scholar 

  • Svorcova L (1975) Iron bacteria of the genus Siderocapsa in mineral waters. Z Allg Mikrobiol 15:553–557

    Article  PubMed  CAS  Google Scholar 

  • Tyler PA, Marshall KC (1967) Hyphomicrobia: a significant factor in manganese problems. J Am Water Works Assoc 59:1043–1048

    CAS  Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–835

    Article  CAS  Google Scholar 

  • Winogradsky S (1888) Üeber Eisenbakterien. Bot Zeitung 46:261–270

    Google Scholar 

Download references

Acknowledgments

The study on the iron-depositing bacteria in the National Park “Unteres Odertal” was funded by a grant of the German Bundesministerium für Bildung und Forschung (BMBF), 02WU0715.

The investigations in Tierra del Fuego are conducted in cooperation with Prof. Sineriz, University of Tucuman, and are financially supported by the Humboldt foundation.

We would like to thank Arne Espelund, Trondheim, Norway, for the introduction in ancient iron production in Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Szewzyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Szewzyk, U., Szewzyk, R., Schmidt, B., Braun, B. (2011). Neutrophilic Iron-Depositing Microorganisms. In: Flemming, HC., Wingender, J., Szewzyk, U. (eds) Biofilm Highlights. Springer Series on Biofilms, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19940-0_4

Download citation

Publish with us

Policies and ethics