Skip to main content

Unveiling Stellar Cores and Multipole Moments via their Flattening

  • Chapter
  • First Online:
The Pulsations of the Sun and the Stars

Part of the book series: Lecture Notes in Physics ((LNP,volume 832))

Abstract

Rotation, and more precisely differential rotation, has a major impact on the internal dynamics of stars (and the Sun) and induces many instabilities driving the transport of angular momentum. In this chapter we shall consider these effects on the shape of shelllular layers, and to first order, those concerning the apparent oblateness. Thanks to the advent of interferometry techniques, stellar shapes can now be measured with a great accuracy. We will review here some main results obtained so far on different stars and we will give their main physical parameters taking into account differential rotation. We will discuss how the core density can be reached. Gravitational moments are presented for these observed flattened stars, and for the Sun, for which some conflicting results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Von Zeipel’s [24] theorem stipulates that contours of temperature, density, or pressure should be nearly coincident near the surface. Differential rotation, magnetic fields and turbulent pressure are the largest local acceleration sources that may violate this theorem. It has been generalized to account for differential rotation in the case of a “shellular” rotation law by Maeder [36].

  2. 2.

    Note the relation \(-s_0 =\frac{1}{5} s_2 + \frac{2}{105} s_2^3.\)

  3. 3.

    Helioseismic inversions provide a more realistic rotation profile, albeit less practical, that we shall recall here. Assuming a solid rotation below 0.66, and a differential rotation above the interface, one can write:

    $$ \Upomega(r, \theta) = \Upomega_c + \frac{1}{2}\big[1 + \mbox{\rm erf}(2*\frac{r-r_c}{d_1}\big] \times (\Upomega_{Eq} + a_2\hbox{\hbox{cos}}^2 \theta + a_4 \hbox{\hbox{cos}}^4 \theta - \Upomega_c), $$
    (5.22)

    with \(\Upomega_{Eq}=1,\) \(\Upomega_c=0.93944,\) \(r_c=0.7,\) \(d_1=0.05,\) \(a_2=-0.136076\) and \(a_4=-0.145713;\) “erf” is the error function. With this profile, the radial shear is maximal at the tachocline. Using this profile and numerically integrating the equipotentials from the core to the surface leads to a \(J_2\) lying between 1.60 \(10^{-7}\) and 2.20 \(10^{-7}\) [34].

  4. 4.

    There is a sign mistake in [7] p. 23; the slight difference in the estimates is due to the different values used for the solar radius.

  5. 5.
    $$ \hbox{given by}\quad \frac{d^2f}{dq^2}+ \frac{6}{q}\frac{\rho}{D}\frac{f}{q} - {\frac{6}{q^{2}}}\left(1-\frac{\rho}{D}\right)f = 0, \quad \hbox{where} \;{\it D}\;\hbox{is}\; \frac{3}{q^3}\int\limits_0^q \rho q^2 dq. $$
  6. 6.

    Or 1.9891 \(\times 10^{33}\) \({\rm g}\) \(\pm\) 0.0004 (Cohen and Taylor, 1984).

  7. 7.

    The estimate based on surface rotation alone [46] is 1.63\(\times10^{+48},\) which is about 15% smaller. The average angular momentum as a function of radius (and latitude) basically determined by the solar model that provides the density as a function of radius.

  8. 8.

    Truncated at the order 3, and putting \(h= 0,\) (5.42) represents the so-called Darwin-de Sitter spheroid equation.

References

  1. Milne, E.A.: MNRAS 83, 118 (1923)

    Google Scholar 

  2. Chandrasekhar, S.: MNRAS 93, 390 (1933)

    Google Scholar 

  3. Allen, C.W., Cox, A.N.: Allen’s Astrophysical Quantities, 4th edn, p. 719. Springer, New York (2000)

    Google Scholar 

  4. Newcomb, S.: Fundamental Constants of Astronomy, p. 111. US GPO, Washington (1865)

    Google Scholar 

  5. Auwers, A.: Astron. Nach. 128, 367 (1891)

    Google Scholar 

  6. Dicke, R.H., Goldenberg, H.M.: Phys. Rev. Lett. 18, 313 (1967)

    Google Scholar 

  7. Rozelot, J.P., Damiani, C., Lefebvre, S.: JASTP 71, 1683 (2009)

    Google Scholar 

  8. Damiani, C., Rozelot, J.P., Lefebvre, S., Kilcik, A., Kosovichev, A.K. JASTP 73(2–3), 241–250 (2010). doi:10.1016/j.jastp.2010.02.021

  9. Hudson, H., Rozelot, J.P. (2010) RHESSI science nugget. http://sprg.ssl.berkeley.edu/tohban/wiki/index.php/HistoryofSolarOblateness

    Google Scholar 

  10. Emilio, M., Bush, R.I., Kuhn, J., Scherrer, P.: ApJ 660, L161 (2007)

    Google Scholar 

  11. Damiani, C., Rozelot, J.P., Pireaux, S.: ApJ 703(2), 1791 (2009)

    Google Scholar 

  12. van Belle, G.T., Ciardi, D.R., Thompson, R.R., Akeson, R.L., Lada, E.A.: ApJ 559, 1155 (2001)

    Google Scholar 

  13. Jackson, S., MacGregor, K.B., Skumanich, A.: ApJ 606, 1196 (2004)

    Google Scholar 

  14. Domiciano de Souza, A., Kervella, P., Jankov, S., et al.: A&A 407, L47 (2003)

    Article  ADS  Google Scholar 

  15. Mc Alister, H.A., ten Brummelaar, T.A., Gies, D.R. et al.: ApJ 628, 439 (2005)

    Article  ADS  Google Scholar 

  16. Aufdenberg, J.P., Mérand, A., Coudédu Foresto, V. et al.: ApJ 645, 664 (2006)

    Google Scholar 

  17. Peterson, D.M., Hummel, C.A., Pauls, T.A. et al.: . Nature 440, 896 (2006)

    Google Scholar 

  18. van Belle, G.T., Ciardi, D.R., ten Brummelaar, T. et al.: ApJ 637, 494 (2006)

    Google Scholar 

  19. Domiciano de Souza, A., Kervella, P., Jankov, S. et al.: A&A 442, 567 (2005)

    Google Scholar 

  20. Peterson, D.M., Hummel, C.A., Pauls, T.A. et al.: ApJ 636, 108 (2006)

    Google Scholar 

  21. Monnier, J.D., Zhao, M., Pedretti, E. et al.: Science 317, 342 (2007)

    Google Scholar 

  22. Zhao, M., Monnier, J.D., Pedretti, E. et al.: ApJ 701, 209 (2009)

    Google Scholar 

  23. Neiner, C., Floquet, M., Hubert, A.M. et al.: A&A 437, 257 (2005)

    Google Scholar 

  24. von Zeipel, H.: MNRAS 84, 665 (1924)

    Google Scholar 

  25. Zharkov, V.N., Turbitsyn, V.P.: Sov. Phys. 13, 981 (1970)

    Google Scholar 

  26. Rozelot, J.P., Lefebvre, S. The Sun’s Surface and Subsurface, Lecture Notes in Physics, 599, 4 (2003)

    Google Scholar 

  27. Hubbard, W.B.: Astron. J. 51, 1052 (1974)

    Google Scholar 

  28. Lefebvre, S. (2003) : Déformées solaires, diamètre et structure interne. Ph D. Thesis, Nice University

    Google Scholar 

  29. Javaraiha J., Rozelot J.P.: Technical note. Observatoire de la Côte d’Azur, Nice University (2002)

    Google Scholar 

  30. Lefebvre, S., Kosovichev, A.K., Rozelot, J.P.: ApJ 658, L135 (2007)

    Google Scholar 

  31. Javaraiah, J.: Solar Phys. 257, 61 (2009)

    Google Scholar 

  32. Kuiper, J. The Sun, Chicago University Press, Chicago (1972)

    Google Scholar 

  33. Howard, R., Boyden, J.E., LaBonte, B.: Sol. Phys. 66, 167 (1980)

    Google Scholar 

  34. Godier, S., Rozelot, J.P.: A& A 350, 310–317 (1999)

    ADS  Google Scholar 

  35. Meynet, A., Milne, E.A.: Physics of rotation in stellar models. In: Rozelot, J.P., Neiner, C. (eds.) The Rotation of Sun and Stars, vol. 765, pp. 139. Springer, Heidelberg (2009)

    Google Scholar 

  36. Fivian, M.D. et al.: Science 322, 560 (2008)

    Google Scholar 

  37. Deupree, R.G. CNRS St Flour School, this proceedings (2010)

    Google Scholar 

  38. Maeder, A.: A & A 347, 185 (1999)

    Google Scholar 

  39. Lydon, T.J., Sofia, S.: Phys. Rev. Lett. 76, 177 (1996)

    Google Scholar 

  40. Ajabshirizadeh, A., Rozelot, J.P., Fazel, Z.: Contribution of the solar magnetic field on graviational moments. Scientia Iranica, 15 (1), 144–149 (2008)

    Google Scholar 

  41. Roxburgh, I.W.: A& A 377, 688–690 (2001)

    Google Scholar 

  42. Paternó, L., Sofia, S., DiMauro, M. P.: The rotation of the Sun’s core. Astron. & Astrophys., 314, 940–946 (1996)

    Google Scholar 

  43. Armstrong, J., Kuhn, J. R.: (1999). Interpreting the Solar Limb Shape Distortions. Astrophys. Jour., 525, 533 (1999)

    Google Scholar 

  44. Komm, R., Howe, R., Durney, B. R., Hill, F .: Temporal Variation of Angular Momemtum in the Solar Convection Zone. Astrophysical Journal. 586, 650–662 (2003)

    Google Scholar 

  45. Antia, Chitre, & Thompson 2000, A & A, 306,335

    Google Scholar 

  46. Livingston, W. C. 2000, in Allen’s Astrophyscial Quantities, ed. A. N. Cox (New York: Springer), p. 340.

    Google Scholar 

  47. Kopal, Z.: Astrophys. Space Sci. 133, 157 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Rozelot .

Editor information

Editors and Affiliations

Appendices

Annex 1: Equation of the Spheroid

The equation of an ellipsoid of revolution is given by:

$$ \frac{r^2(\theta)\,\hbox{cos}^2\theta}{R_{\text{eq}}^2(1-\varepsilon)^2} + \frac{r^2(\theta)\,\hbox{sin}^2\theta}{R_{\text{eq}}^2} = 1 $$
(5.40)

Expanding \(r(\theta)\) in powers of \(\varepsilon,\) we obtain

$$ r(\theta) = R_{\text{eq}}\left[1 -\varepsilon \hbox{cos}^2 \theta - \frac{3}{2} \varepsilon^2(\hbox{sin}^2\theta \,\hbox{cos}^2\theta) \right. + \left. \frac{1}{8}\varepsilon^3(1-5 \hbox{sin}^2\theta) \, \hbox{sin}^2 2\theta + \cdots \right] $$
(5.41)

Designing by \(k(R_{\text{eq}})\) and \(h(R_{\text{eq}})\) the second-order and third-order corrections, (5.41) becomes Footnote 8

$$ \begin{aligned} r(\theta) &= R_{\text{eq}}\left[1 -\varepsilon \hbox{cos}^2 \theta - (\frac{3}{8} \varepsilon^2 + k) \hbox{sin}^2 2\theta \right. \\ &\left.\,\,\quad\qquad\qquad + \frac{1}{4} ( \frac{1}{2}\varepsilon^3 + h )(1 - 5 \hbox{sin}^2\theta) \,\hbox{sin}^2 2\theta + \cdots \right]. \end{aligned} $$
(5.42)

Inserting this development of the radius vector \(r(\theta)\) in the expression of the total potential one obtains

$$ \Upphi_{\text{tot}} = -\frac{GM}{R_{\text{eq}}}\left[ 1 + a(\varepsilon,\theta) + b(\varepsilon,\theta) J_2 + c(\varepsilon,\theta) J_4 + \cdots \right] $$
(5.43)

\(J_n\) represents the gravitational moments(see 5.7). On the equilibrium surface, \(\Upphi_{\text{tot}}\) must be constant (i.e. independent from \(\theta),\) so that the \(J_n\) coefficients must vanish (see 5.14).

Annex 2: Roche’s Model

The stellar equipotential surfaces of a body of mass \(M\) rotating at constant angular velocity \(\Upomega\) are described by

$$ \Upphi (\theta) = \frac{\Upomega^2 R^2(\theta) \hbox{sin}^2 (\theta)}{2} + \frac{GM}{R(\theta) }= \frac{GM}{R_{\text{pol}}} $$
(5.44)

Introducing the degree of sphericity \(D = R_{\text{pol}}/R_{\text{eq}},\) which relates the inverse of the oblateness to the polar radius, (5.44) can be rewritten as

$$ r^3(\theta) -r(\theta) \left(\frac{1}{1-D} \right) \frac{1}{\hbox{sin}^2(\theta)} + \left( \frac{D}{1-D} \right) \frac{1}{\hbox{sin}^2(\theta)} = 0 $$
(5.45)

where \(r(\theta)\) designs the normalized radius \({\equiv} R(\theta)/R_{\text{eq}}.\) Solution of (5.45) is obtained through hypergeometric series of argument \(\varsigma\) given by \( \varsigma^2 \equiv 2 \frac{(1-D)}{D} (\frac{3D}{2})^3 \hbox{sin}^2 \theta\) [47], which determine the stellar shape. Lastly, it can be useful to remember the quantities relating critical and non-critical parameters. The critical or break-up velocity for the Roche’s model is attained when the centrifugal and gravitational forces are equal. this leads to the following set of equations:

$$ \frac{R_{\rm c}}{R_{\rm p}} = \frac{3}{2} \equiv D_{\rm c} $$
$$ v_{\rm c}=\Upomega_{\rm c} R_{\rm c}=\sqrt{\frac{GM}{R_{\rm c}}}=\sqrt{GM\left( \frac{2}{3R_{\rm p} }\right)} $$
$$ \frac{v_{\rm eq}}{v_{\rm c}}=\sqrt {3\left( 1-D\right)} = \frac{\Upomega}{\Upomega_{\rm c}} \frac{R_{\rm eq}}{R_{\rm c}} \equiv \omega \frac{R_{\rm eq}}{R_{\rm c}} $$
$$ \Upomega_{{\rm c}}= \frac{v_{\rm c}}{R_{\rm c}}=\sqrt{\frac{8GM}{27{R_{\rm p}^{3}}}} $$
$$ \frac{\Upomega }{\Upomega _{\rm c}}= \omega =\sqrt{3( 1-D)}\left( \frac{3}{2}D\right) $$

One will note that the angular (\(\Upomega)\) and linear (\(v\)) velocities are linked by \(\Upomega = v/R (\hbox{sin}\,i).\)

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rozelot, JP., Damiani, C., Kilcik, A., Tayoglu, B., Lefebvre, S. (2011). Unveiling Stellar Cores and Multipole Moments via their Flattening. In: Rozelot, JP., Neiner, C. (eds) The Pulsations of the Sun and the Stars. Lecture Notes in Physics, vol 832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19928-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19928-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19927-1

  • Online ISBN: 978-3-642-19928-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics