Skip to main content

Temporal Defenses for Robust Recommendations

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6549))

Abstract

Recommender systems are vulnerable to attack: malicious users may deploy a set of sybils (pseudonymous, automated entities) to inject ratings in order to damage or modify the output of Collaborative Filtering (CF) algorithms. To protect against these attacks, previous work focuses on designing sybil profile classification algorithms, whose aim is to find and isolate sybils. These methods, however, assume that the full sybil profiles have already been input to the system. Deployed recommender systems, on the other hand, operate over time, and recommendations may be damaged while sybils are still injecting their profiles, rather than only after all malicious ratings have been input. Furthermore, system administrators do not know when their system is under attack, and thus when to run these classification techniques, thus risking to leave their recommender system vulnerable to attacks. In this work, we address the problem of temporal sybil attacks, and propose and evaluate methods for monitoring global, user and item behaviour over time, in order to detect rating anomalies that reflect an ongoing attack.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adomavicius, G., Tuzhilin, A.: Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE TKDE 17(6) (June 2005)

    Google Scholar 

  2. Mobasher, B., Burke, R., Bhaumik, R., Williams, C.: Toward Trustworthy Recommender Systems: An Analysis of Attack Models and Algorithm Robustness. In: ACM TOIT (2007)

    Google Scholar 

  3. Yu, H., Kaminsky, M., Gibbons, P., Flaxman, A.: SybilGuard: Defending Against Sybil Attacks Via Social Networks. In: ACM SIGCOMM, Pisa, Italy, vol. 4, pp. 267–278 (2006)

    Google Scholar 

  4. Yu, H., Shi, C., Kaminsky, M., Gibbons, P.B., Xiao, F.: DSybil: Optimal Sybil-Resistance for Recommendation Systems. In: IEEE Symposium on Security and Privacy, Oakland, CA (May 2009)

    Google Scholar 

  5. Williams, C., Mobasher, B., Burke, R.: Defending Recommender Systems: Detection of Profile Injection Attacks. Journal of Service Oriented Computing and Applications (August 2009)

    Google Scholar 

  6. Lathia, N., Hailes, S., Capra, L.: Temporal Collaborative Filtering With Adaptive Neighbourhoods. In: ACM SIGIR, Boston, USA (2009)

    Google Scholar 

  7. Amatriain, X., Pujol, J.M., Tintarev, N., Oliver, N.: Rate it Again: Increasing Recommendation Accuracy by User Re-Rating. In: ACM RecSys., New York, USA (2009)

    Google Scholar 

  8. Lam, S.K., Riedl, J.: Shilling Recommender Systems for Fun and Profit. In: Proceedings the 13th International Conference on World Wide Web, New York, USA (2004)

    Google Scholar 

  9. Wu, S.X., Banzhaf, W.: Combatting Financial Fraud: A Coevolutionary Anomaly Detection Approach. In: 10th Annual Conference on Genetic and Evolutionary Computation, Atlanta, GA, USA, pp. 1673–1680 (2008)

    Google Scholar 

  10. Siris, V.A., Papagalou, F.: Application of Anomaly Detection Algorithms for Detecting SYN Flooding Attacks. Computer Communications 29, 1433–1442 (2006)

    Article  Google Scholar 

  11. Bhaumik, R., Williams, C., Mobasher, B., Burke, R.: Securing Collaborative Filtering Against Malicious Attacks Through Anomaly Detection. In: Proceedings of the 4th Workshop on Intelligent Techniques for Web Personalization (ITWP 2006), Boston (July 2006)

    Google Scholar 

  12. Yang, Y., Sun, Y., Kay, S., Yang, Q.: Defending Online Reputation Systems against Collaborative Unfair Raters through Signal Modeling and Trust. In: Proceedings of ACM SAC TRECK (2009)

    Google Scholar 

  13. Resnick, P., Sami, R.: The Influence Limiter: Provably Manipulation Resistant Recommender Systems. In: Proceedings of Recommender Systems (RecSys 2007), Minneapolis, USA (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lathia, N., Hailes, S., Capra, L. (2011). Temporal Defenses for Robust Recommendations. In: Dimitrakakis, C., Gkoulalas-Divanis, A., Mitrokotsa, A., Verykios, V.S., Saygin, Y. (eds) Privacy and Security Issues in Data Mining and Machine Learning. PSDML 2010. Lecture Notes in Computer Science(), vol 6549. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19896-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19896-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19895-3

  • Online ISBN: 978-3-642-19896-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics