Advertisement

GRACE: A Generational Randomized ACO for the Multi-objective Shortest Path Problem

  • Leonardo C. T. Bezerra
  • Elizabeth F. G. Goldbarg
  • Luciana S. Buriol
  • Marco C. Goldbarg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6576)

Abstract

The Multi-objective Shortest Path Problem (MSP) is a widely studied NP-Hard problem. A few exact algorithms were already proposed to solve this problem, however none is able to solve large instances with three or more objectives. Recently, some metaheuristics have been proposed for the MSP, but little can be said about their efficiency regarding each other, since no comparisons among them are presented in the literature. In this paper an Ant Colony Optimization (ACO) algorithm, called GRACE, is proposed for the MSP. The proposed approach is compared to the well-known evolutionary algorithm NSGA-II. Furthermore, GRACE is compared to another ACO algorithm proposed previously for the MSP. Results of a computational experiment with eighteen instances, with three objectives each, show that the proposed approach is able to produce high quality results for the tested instances.

Keywords

Shortest Path Problem Multi-objective Ant Colony Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – A platform and programming language independent interface for search algorithms. In: Fonseca, C., Fleming, P., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Buriol, L.S., Resende, M.G.C., Thorup, M.: Speeding up dynamic shortest path algorithms. INF. J. on Comp. 20(2), 191–204 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Conover, W.J.: Practical non-parametric statistics, 3rd edn. John Wiley and Sons, New York (1999)Google Scholar
  4. 4.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press and McGraw-Hill (2001)Google Scholar
  5. 5.
    Costelloe, D., Mooney, P., Winstansley, A.: From random walks to pareto optimal paths. In: Proceedings of the 4th Irish Artificial Intelligence and Cognitive Science Conference, pp. 523–530 (2001)Google Scholar
  6. 6.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. on Evol. Comp. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  7. 7.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Num. Math. (1959)Google Scholar
  8. 8.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. on Evol. Comp. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  9. 9.
    Dorigo, M., Socha, K.: An introduction to ant colony optimization. Tech. Rep. TR/IRIDIA/2006-010, Institut de Recherches Interdisciplinaires et de Développements em Intelligence Artificialle, Université Libre de Bruxelles (2006)Google Scholar
  10. 10.
    Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Dipartamento de Elettronica, Politecnico de Milano (1992)Google Scholar
  11. 11.
    Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spek. 22(4), 425–460 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ghoseiri, K., Nadjari, B.: An ant colony optimization algorithm for the bi-objective shortest path problem. App. Soft Comp. 10(4), 1237–1246 (2010)CrossRefGoogle Scholar
  13. 13.
    Häckel, S., Fischer, M., Zechel, D., Teich, T.: A multi-objective ant colony approach for pareto-optimization using dynamic programming. In: GECCO 2008, pp. 33–40. ACM, New York (2008)Google Scholar
  14. 14.
    He, F., Qi, H., Fan, Q.: An evolutionary algorithm for the multi-objective shortest path problem. In: Proceedings of ISKE 2007 (2007)Google Scholar
  15. 15.
    Iredi, S., Merkle, D., Middendorf, M.: Bi-criterion optimization with multi colony ant algorithms. In: Zitzler, E., Thiele, L., Deb, K., Coello, C.A.C., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 359–372. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. on Sys. Man and Cyber. Part C: App. and rev. 28(3), 392–403 (1998)CrossRefGoogle Scholar
  17. 17.
    Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. Tech. Rep. TIK-Report No. 214, Computer Engineering and Networks Laboratory, ETH Zurich (2006)Google Scholar
  18. 18.
    Lin, L., Gen, M.: A bicriteria shortest path routing problems by hybrid genetic algorithm in communication networks. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 4577–4582 (2007)Google Scholar
  19. 19.
    López-Ibanez, M., Paquete, L., Stützle, T.: On the design of ACO for the biobjective quadratic assignment problem. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L., Montada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 214–225. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Martins, E.Q.V.: On a multicritera shortest path problem. Eur. J. of Op. Res. 16, 236–245 (1984)CrossRefzbMATHGoogle Scholar
  21. 21.
    Michael, C.M., Stewart, C.V., Kelly, R.B.: Reducing the search time of a steady state genetic algorithm using the immigration operator. In: Proceedings of the IEEE Congress on Tools for AI, pp. 500–501 (1991)Google Scholar
  22. 22.
    Mooney, P., Winstansley, A.: An evolutionary algorithm for multicriteria path optimization problems. Int. J. of Geo. Inf. Sci. 20(4), 401–423 (2006)CrossRefGoogle Scholar
  23. 23.
    Mote, J., Murphy, I., Olson, D.L.: A parametric approach to solving bicriterion shortest path problems. Eur. J. of Op. Res. 53, 81–92 (1991)CrossRefzbMATHGoogle Scholar
  24. 24.
  25. 25.
    Multi-objective NSGA-II code in C. Revision 1.1 (June 10, 2005) (For Linux only), www.iitk.ac.in/kangal/codes.shtml
  26. 26.
    Murata, T., Ishibuchi, H., Gen, M.: Specification of genetic search directions in cellular multi-objective genetic algorithms. In: Zitzler, E., Thiele, L., Deb, K., Coello, C.A.C., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 82–95. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Pangilinan, J.M.A., Janseens, G.K.: Evolutionary algorithms for the multiobjective shortest path problem. Int. J. of Comp. and Inf. Sci. and Eng. 1 (2007)Google Scholar
  28. 28.
    Raith, A., Ehrgott, M.: A comparison of solution strategies for the biobjective shortest path problem. Comp. and Op. Res. 36(4), 1299–1331 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Rocha, D.A.M.: Busca local para o problema quadrático de alocação multiobjetivo (pqa-mo). Final essay for Computer Science B.Sc. Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil (2006)Google Scholar
  30. 30.
    Serafini, P.: Some considerations about computational complexity for multi objective combinatorial problems. In: Jahn, J., Krabs, W. (eds.) Recent advances and historical development of vector optimization. Lecture Notes in Economics and Mathematical Systems, vol. 294. Springer, Berlin (1986)Google Scholar
  31. 31.
    Skriver, A.J.V., Andersen, K.A.: A label correcting approach for solving bicriterion shortest-path problems. Comp. and Op. Res. 27(6), 507–524 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Skriver, A.J.V.: A classification of bicriterion shortest path (bsp) algorithms. Asia-Pac. J. of Op. Res. 17, 199–212 (2000)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Steiner, S., Radzik, T.: Solving the biobjective minimum spanning tree problem using a k-best algorithm. Tech. Rep. TR-03-06, Department of Computer Science, King’s College London (2003)Google Scholar
  34. 34.
    Taillard, E., Waelti, P., Zuber, J.: Few statistical tests for proportions comparison. Eur. J. Oper. Res. 185, 1336–1350 (2009)CrossRefzbMATHGoogle Scholar
  35. 35.
    Wilcoxon, F.: Individual comparisons by ranking methods. Bio. bull. 1(6), 80–83 (1945)CrossRefGoogle Scholar
  36. 36.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto evolutionary algorithm. IEEE Trans. on Evol. Comp. 3(4), 257–271 (1999)CrossRefGoogle Scholar
  37. 37.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. Tech. Rep. TIK-Report No. 139, Institut für Technische Informatik und Kommunikationsnetze, ETH Zürich (2002)Google Scholar
  38. 38.
    Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength pareto evolutionary algorithm. Tech. Rep. TIK-Report 103, Computer Engineering and Networks Laboratory (TIK), Departament of Electrical Engeneering, Swiss Federal Institute fo Technology (ETH) Zurich (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Leonardo C. T. Bezerra
    • 1
  • Elizabeth F. G. Goldbarg
    • 1
  • Luciana S. Buriol
    • 2
  • Marco C. Goldbarg
    • 1
  1. 1.Universidade Federal do Rio Grande do NorteNatalBrazil
  2. 2.Universidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations