Lorenz versus Pareto Dominance in a Single Machine Scheduling Problem with Rejection

  • Atefeh Moghaddam
  • Farouk Yalaoui
  • Lionel Amodeo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6576)


Scheduling problems have been studied from many years ago. Most of the papers which were published in this domain are different in one or many of issues as following: objective functions, machine environment, constraints and methodology for solving the problems. In this paper we address the problem of single machine scheduling in which due to some constraints like capacity, rejection of a set of jobs is accepted. The problem is considered as bi-objective one: minimization of the sum of weighted completion times for the accepted jobs and minimization of the sum of penalties for the rejected jobs. We find that in this problem, the solutions are not handled in a satisfactory way by general Pareto-dominance rule, so we suggest the application of Lorenz-dominance to an adapted bi-objective simulated annealing algorithm. Finally we justify the use of Lorenz-dominance as a useful refinement of Pareto-dominance by comparing the results.


Scheduling rejection Pareto-dominance Lorenz-dominance bi-objective simulated annealing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multiprocessor scheduling with rejection. SIAM Journal on Discrete Mathematics 13, 64–78 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Seiden, S.: Preemptive multiprocessor scheduling with rejection. Theoretical Computer Science 262, 437–458 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hoogeveen, H., Skutella, M., Woeginger, G.J.: Preemptive scheduling with rejection. Mathematical Programming 94, 361–374 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lu, L., Zhang, L., Yuan, J.: The unbounded parallel batch machine scheduling with release dates and rejection to minimize makespan. Theoretical Computer Science 396, 283–289 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Zhang, L., Lu, L., Yuan, J.: Single machine scheduling with release dates and rejection. European Journal of Operational Research 198, 975–978 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cheng, Y., Sun, S.: Scheduling linear deteriorating jobs with rejection on a single machine. European Journal of Operational Research 194, 18–27 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lu, L., Cheng, T.C.E., Yuan, J., Zhang, L.: Bounded single-machine parallel-batch scheduling with release dates and rejection. Computers and Operations Research 36, 2748–2751 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cao, Z., Yang, X.: A PTAS for parallel batch scheduling with rejection and dynamic job arrivals. Theoretical Computer Science 410, 2732–2745 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dósa, G., He, Y.: Scheduling with machine cost and rejection. Journal of Combinatorial Optimization 12, 337–350 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Nagy-György, J., Imreh, Cs.: Online scheduling with machine cost and rejection. Discrete Applied Mathematics 155, 2546–2554 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bansal, N., Blum, A., Chawla, S., Dhamdhere, K.: Scheduling for flow-time with admission control. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 43–54. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Engels, D.W., Karger, D.R., Kolliopoulos, S.G., Sengupta, S., Uma, R.N., Wein, J.: Techniques for scheduling with rejection. Journal of Algorithms 49, 175–191 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Moghaddam, A., Yalaoui, F., Amodeo, L., Karimi, B., Jolai, F.: Developing a Technique for a Bi-objective Scheduling Model with Rejection by Simulated Annealing. In: MOSIM 2010, Hammamet, Tunisia (2010)Google Scholar
  14. 14.
    Jolai, F., Sangari, M.S., Babaie, M.: Pareto simulated annealing and colonial competitive algorithm to solve an offline scheduling problem with rejection. In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, doi: 10.1243/09544054JEM1746Google Scholar
  15. 15.
    Moghaddam, A., Yalaoui, F., Amodeo, L.: Single Machine Scheduling with Rejection: Minimizing total Weighted Completion Time and Rejection Cost. In: EURO XXIV, Lisbon, Portugal (2010)Google Scholar
  16. 16.
    Ulungu, E.L., Teghem, J.: The two phases method: An efficient procedure to solve bi-objective combinatorial optimization problems. Foundation of Computing and Decision Sciences 20(2), 149–165 (1995)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Moghaddam, A., Amodeo, L., Yalaoui, F.: Simulated annealing for a bi-objective scheduling problem with rejection: comparative study. In: META 2010, Djerba, Tunisia (2010)Google Scholar
  18. 18.
    Dugardin, F., Yalaoui, F., Amodeo, L.: New multi-objective method to solve reentrant hybrid flow shop scheduling problem. European Journal of Operational Research 203, 22–31 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kostreva, M.M., Ogryczak, W., Wierzbicki, A.: Equitable aggregation and multiple criteria analysis. European Journal of Operational Research 158, 362–377 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Golden, B., Perny, P.: Infinite order Lorenz dominance for fair multiagent optimization. In: van der Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S.: (eds.) Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto, Canada, May 10-14, pp. 383–390 (2010)Google Scholar
  21. 21.
    Perny, P., Spanjaard, O., Storme, L.-X.: A decision-theoretic approach to robust optimization in multivalued graphs. Annals of Operations Research 147, 317–341 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Moghaddam, A., Amodeo, L., Yalaoui, F.: Single Machine Scheduling with Rejection: Minimizing total Weighted Completion Time and Rejection Cost. Journal of Mathematical Modelling and Algorithms (to be submitted)Google Scholar
  23. 23.
    McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I - Convex underestimating problems. Mathematical Programming 10, 146–175 (1976)CrossRefzbMATHGoogle Scholar
  24. 24.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mansouri, S.A.: A simulated annealing approach to a bi-criteria sequencing problem in a two-stage supply chain. Computers and Industrial Engineering, 1–15 (2006)Google Scholar
  26. 26.
    Varadharajan, T.K., Rajendran, C.: A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs. European Journal of Operational Research 167, 772–795 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ulungu, E.L., Teghem, J., Fortemps, P.H., Tuyttens, D.: MOSA method: A tool for solving multiobjective combinatorial optimization problems. Journal of Multi-Criteria Decision Analysis 8, 221–236 (1999)CrossRefzbMATHGoogle Scholar
  28. 28.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation 7, 117–132 (2003)CrossRefGoogle Scholar
  29. 29.
    Riise, A.: Comparing genetic algorithms and tabu search for multi-objective optimization. In: IFORS, Proceedings of Abstract Conference, p. 29 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Atefeh Moghaddam
    • 1
  • Farouk Yalaoui
    • 1
  • Lionel Amodeo
    • 1
  1. 1.ICD, LOSIUniversity of Technology of TroyesTroyesFrance

Personalised recommendations