Advertisement

A Bi-objective Iterated Local Search Heuristic with Path-Relinking for the p-Median Problem

  • José E. C. Arroyo
  • André G. Santos
  • Paula M. dos Santos
  • Wellington G Ribeiro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6576)

Abstract

In this paper, we examine the p-median problem from a bi-objective point of view. Since this is a NP-Hard problem, an efficient algorithm based on the Iterated Local Search heuristic (ILS) is proposed to determine non-dominated solutions (an approximation of the Pareto-optimal solutions). ILS is a simple and powerful stochastic method that has shown very good results for a variety of single-objective combinatorial problems. In each component of the ILS, we use the concept of Pareto dominance. An intensification component based on the Path-Relinking is used to improve the quality of the found non-dominated solutions. To test the performance of the proposed algorithm, we develop a Mathematical Programming Algorithm, called ε-Constraint, that finds a subset of Pareto-optimal solutions by solving iteratively the mathematical model of the problem with additional constraints. The results show that the proposed approach is able to generate good approximations to the non-dominated frontier of the bi-objective problem efficiently.

Keywords

Heuristics Local search Path Relinking Multi-objective Combinatorial Optimization p-Medians 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arroyo, J.E.C., Vieira, P.S., Vianna, D.S.: A GRASP algorithm for the multi-criteria minimum spanning tree problem. Ann. Oper. Res. 159, 125–133 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing - a metaheuristic technique for multiple objective optimization. J. Multi-Crit Decis. Making 7, 34–47 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Gandibleux, X., Ehrgott, M.: 1984-2004 – 20 Years of Multiobjective Metaheuristics. But What About the Solution of Combinatorial Problems with Multiple Objectives? In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 33–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Geiger, M.J.: Improvements for multi-objective flow shop scheduling by Pareto Iterated Local Search. In: 8th Metaheuristics International Conference, pp. 195.1–195.10 (2009)Google Scholar
  5. 5.
    Glover, F.: Tabu search and adaptive memory programming - advances, applications, and challenges. In: Interfaces in Computer Science and Operations Research, pp. 1–75. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  6. 6.
    Jones, D.F., Mirrazavi, S.K., Tamiz, M.: Multi-objective meta-heuristics: An overview of the current state-of-art. Eur. J. Oper. Res. 137, 1–19 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems. II. The p-medians. SIAM J. on Applied Mathematics 37, 539–560 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Liang, Y.-C., Lo, M.-H.: Multi-objective redundancy allocation optimization using a Variable Neighborhood Search algorithm. J. Heuristics 16(3), 511–535 (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F. (ed.) Kochenberger Handbook of metaheuristics, pp. 321–353. Kluwer Academic, Dordrecht (2003)Google Scholar
  10. 10.
    Medaglia, A.L., Villegas, J.G., Rodrígues-Coca, D.M.: Hybrid biobjective evolutionary algorithms for the design of a hospital waste management network. J. of Heuristic 15(2), 153–176 (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Mladenovic´, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.A.: The p-median problem: A survey of metaheuristic approaches. Eur. J. Oper. Res. Research 179, 927–939 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Reese, J.: Solution methods for the p-median problem: An annotated bibliography. Networks 48(3), 125–142 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Resende, M.G.C., Werneck, R.F.: A hybrid multistart heuristic for the uncapacitated facility location problem. Eur. J. Oper. Res. 174(1), 54–68 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Villegas, J.G., Palacios, F., Medaglia, A.L.: Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example. Ann. Oper. Res. 147(1), 109–141 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yagmahan, B., Yenisey, M.M.: Ant colony optimization for multi-objective flow shop scheduling problem. Comp. Ind. Eng. 54(3), 411–420 (2008)CrossRefGoogle Scholar
  16. 16.
    Framinan, J.M., Leisten, R.: A multi-objective iterated greedy search for flowshop scheduling with makespan and flowtime criteria. OR Spectrum 30(4), 787–804 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans. Evol. Comput. 7(2), 204–223 (2003)CrossRefGoogle Scholar
  18. 18.
    Al-Fawzana, M.A., Haouari, M.: A bi-objective model for robust resource-constrained project scheduling. Int. J. Prod. Econ. 96, 175–187 (2005)CrossRefGoogle Scholar
  19. 19.
    Arroyo, J.E.C., dos Santos, P.M., Soares, M.S., Santos, A.G.: A Multi-Objective Genetic Algorithm with Path Relinking for the p-Median Problem. In: Kuri-Morales, A., Simari, G.R. (eds.) IBERAMIA 2010. LNCS, vol. 6433, pp. 70–79. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. Technical Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • José E. C. Arroyo
    • 1
  • André G. Santos
    • 1
  • Paula M. dos Santos
    • 1
  • Wellington G Ribeiro
    • 1
  1. 1.Departamento de InformáticaUniversidade Federal de ViçosaCentro ViçosaBrasil

Personalised recommendations