Advertisement

Multiobjective Dynamic Optimization of Vaccination Campaigns Using Convex Quadratic Approximation Local Search

  • André R. da Cruz
  • Rodrigo T. N. Cardoso
  • Ricardo H. C. Takahashi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6576)

Abstract

The planning of vaccination campaigns has the purpose of minimizing both the number of infected individuals in a time horizon and the cost to implement the control policy. This planning task is stated here as a multiobjective dynamic optimization problem of impulsive control design, in which the number of campaigns, the time interval between them and the number of vaccinated individuals in each campaign are the decision variables. The SIR (Susceptible-Infected-Recovered) differential equation model is employed for representing the epidemics. Due to the high dimension of the decision variable space, the usual evolutionary computation algorithms are not suitable for finding the efficient solutions. A hybrid optimization machinery composed by the canonical NSGA-II coupled with a local search procedure based on Convex Quadratic Approximation (CQA) models of the objective functions is used for performing the optimization task. The final results show that optimal vaccination campaigns with different trade-offs can be designed using the proposed scheme.

Keywords

Local Search Epidemic Model Endemic Equilibrium Vaccination Campaign Impulsive Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, R.M., May, R.M.: Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford (1992)Google Scholar
  2. 2.
    Barrodale, I.: L1 approximation and the analysis of data. Applied Statistics, 51–57 (1968)Google Scholar
  3. 3.
    Bertsekas, D.P., et al.: Dynamic programming and optimal control (1995)Google Scholar
  4. 4.
    Chubb, M.C., Jacobsen, K.H.: Mathematical modeling and the epidemiological research process. European Journal of Epidemiology 25(1), 13–19 (2010)CrossRefGoogle Scholar
  5. 5.
    Clancy, D.: Optimal intervention for epidemic models with general infection and removal rate functions. Journal of Mathematical Biology 39(4), 309–331 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cruz, A.R., Cardoso, R.T.N., Takahashi, R.H.C.: Uma abordagem multiobjetivo para o problema de controle biológico através da programação dinâmica não-linear via NSGA-II. In: Anais do XXXIX Simpósio Brasileiro de Pesquisa Operacional, pp. 44–55 (September 2007)Google Scholar
  7. 7.
    Cruz, A.R., Cardoso, R.T.N., Takahashi, R.H.C.: Uma abordagem multiobjetivo para o planejamento de campanhas de vacinação via NSGA-II. In: Anais do XL Simpósio Brasileiro de Pesquisa Operacional (September 2008)Google Scholar
  8. 8.
    Cruz, A.R., Cardoso, R.T.N., Takahashi, R.H.C.: Multi-objective design with a stochastic validation of vaccination campaigns. In: Preprints of the IFAC Workshop on Control Applications of Optimisation (CAO 2009), vol. 7(1), pp. 1–6 (2009)Google Scholar
  9. 9.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (August 2002), http://dx.doi.org/10.1109/4235.996017 CrossRefGoogle Scholar
  10. 10.
    Diekmann, O., Heesterbeek, J.A.P.: Mathematical epidemiology of infectious diseases: Model building, analysis, and interpretation. Wiley, Chichester (2000)zbMATHGoogle Scholar
  11. 11.
    d’Onofrio, A.: Stability properties of pulse vaccination strategy in SEIR epidemic model. Mathematical Biosciences 179(1), 57–72 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    d’Onofrio, A.: On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Applied Mathematics Letters 18(7), 729–732 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hethcote, H.W.: Three basic epidemiological models. Applied Mathematical Ecology, 119–144 (1989)Google Scholar
  14. 14.
    Hethcote, H.W.: The mathematics of infectious diseases. SIAM Review 42(4), 599–653 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics-III. further studies of the problem of endemicity. Bulletin of Mathematical Biology 53(1), 89–118 (1991)zbMATHGoogle Scholar
  16. 16.
    Lu, Z., Chi, X., Chen, L.: The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Mathematical and Computer Modelling 36(9-10), 1039–1057 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Moghadas, S.M.: Analysis of an epidemic model with bistable equilibria using the Poincaré index. Applied Mathematics and Computation 149(3), 689–702 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rosen, J.B., Marcia, R.F.: Convex quadratic approximation. Computational Optimization and Applications 28(2), 173–184 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rosen, J.B., Park, H., Glick, J., Zhang, L.: Accurate solution to overdetermined linear equations with errors using L1 norm minimization. Computational Optimization and Applications 17(2), 329–341 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Shulgin, B., Stone, L., Agur, Z.: Pulse vaccination strategy in the SIR epidemic model. Bulletin of Mathematical Biology 60(6), 1123–1148 (1998)CrossRefzbMATHGoogle Scholar
  21. 21.
    Stone, L., Shulgin, B., Agur, Z.: Theoretical examination of the pulse vaccination policy in the SIR epidemic model. Mathematical and Computer Modelling 31(4-5), 207–216 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wanner, E.F., Guimarães, F.G., Takahashi, R.H.C., Fleming, P.J.: Local search with quadratic approximations into memetic algorithms for optimization with multiple criteria. Evolutionary Computation 16(2), 185–224 (2008)CrossRefGoogle Scholar
  23. 23.
    Yang, T.: Impulsive control. IEEE Transactions on Automatic Control 44(5), 1081–1083 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zaman, G., Kang, Y.H., Jung, I.H.: Stability analysis and optimal vaccination of an SIR epidemic model. BioSystems 93(3), 240–249 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • André R. da Cruz
    • 1
  • Rodrigo T. N. Cardoso
    • 2
  • Ricardo H. C. Takahashi
    • 3
  1. 1.Mestrando em Engenharia ElétricaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
  2. 2.Departamento de Física e MatemáticaCentro Federal de Educação Tecnológica de Minas GeraisBelo HorizonteBrasil
  3. 3.Departamento de MatemáticaUniversidade Federal de Minas GeraisBelo HorizonteBrasil

Personalised recommendations