Skip to main content

Multiobjective Dynamic Optimization of Vaccination Campaigns Using Convex Quadratic Approximation Local Search

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6576))

Included in the following conference series:

Abstract

The planning of vaccination campaigns has the purpose of minimizing both the number of infected individuals in a time horizon and the cost to implement the control policy. This planning task is stated here as a multiobjective dynamic optimization problem of impulsive control design, in which the number of campaigns, the time interval between them and the number of vaccinated individuals in each campaign are the decision variables. The SIR (Susceptible-Infected-Recovered) differential equation model is employed for representing the epidemics. Due to the high dimension of the decision variable space, the usual evolutionary computation algorithms are not suitable for finding the efficient solutions. A hybrid optimization machinery composed by the canonical NSGA-II coupled with a local search procedure based on Convex Quadratic Approximation (CQA) models of the objective functions is used for performing the optimization task. The final results show that optimal vaccination campaigns with different trade-offs can be designed using the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R.M., May, R.M.: Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford (1992)

    Google Scholar 

  2. Barrodale, I.: L1 approximation and the analysis of data. Applied Statistics, 51–57 (1968)

    Google Scholar 

  3. Bertsekas, D.P., et al.: Dynamic programming and optimal control (1995)

    Google Scholar 

  4. Chubb, M.C., Jacobsen, K.H.: Mathematical modeling and the epidemiological research process. European Journal of Epidemiology 25(1), 13–19 (2010)

    Article  Google Scholar 

  5. Clancy, D.: Optimal intervention for epidemic models with general infection and removal rate functions. Journal of Mathematical Biology 39(4), 309–331 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cruz, A.R., Cardoso, R.T.N., Takahashi, R.H.C.: Uma abordagem multiobjetivo para o problema de controle biológico através da programação dinâmica não-linear via NSGA-II. In: Anais do XXXIX Simpósio Brasileiro de Pesquisa Operacional, pp. 44–55 (September 2007)

    Google Scholar 

  7. Cruz, A.R., Cardoso, R.T.N., Takahashi, R.H.C.: Uma abordagem multiobjetivo para o planejamento de campanhas de vacinação via NSGA-II. In: Anais do XL Simpósio Brasileiro de Pesquisa Operacional (September 2008)

    Google Scholar 

  8. Cruz, A.R., Cardoso, R.T.N., Takahashi, R.H.C.: Multi-objective design with a stochastic validation of vaccination campaigns. In: Preprints of the IFAC Workshop on Control Applications of Optimisation (CAO 2009), vol. 7(1), pp. 1–6 (2009)

    Google Scholar 

  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (August 2002), http://dx.doi.org/10.1109/4235.996017

    Article  Google Scholar 

  10. Diekmann, O., Heesterbeek, J.A.P.: Mathematical epidemiology of infectious diseases: Model building, analysis, and interpretation. Wiley, Chichester (2000)

    MATH  Google Scholar 

  11. d’Onofrio, A.: Stability properties of pulse vaccination strategy in SEIR epidemic model. Mathematical Biosciences 179(1), 57–72 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. d’Onofrio, A.: On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Applied Mathematics Letters 18(7), 729–732 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hethcote, H.W.: Three basic epidemiological models. Applied Mathematical Ecology, 119–144 (1989)

    Google Scholar 

  14. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Review 42(4), 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics-III. further studies of the problem of endemicity. Bulletin of Mathematical Biology 53(1), 89–118 (1991)

    MATH  Google Scholar 

  16. Lu, Z., Chi, X., Chen, L.: The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Mathematical and Computer Modelling 36(9-10), 1039–1057 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moghadas, S.M.: Analysis of an epidemic model with bistable equilibria using the Poincaré index. Applied Mathematics and Computation 149(3), 689–702 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rosen, J.B., Marcia, R.F.: Convex quadratic approximation. Computational Optimization and Applications 28(2), 173–184 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rosen, J.B., Park, H., Glick, J., Zhang, L.: Accurate solution to overdetermined linear equations with errors using L1 norm minimization. Computational Optimization and Applications 17(2), 329–341 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shulgin, B., Stone, L., Agur, Z.: Pulse vaccination strategy in the SIR epidemic model. Bulletin of Mathematical Biology 60(6), 1123–1148 (1998)

    Article  MATH  Google Scholar 

  21. Stone, L., Shulgin, B., Agur, Z.: Theoretical examination of the pulse vaccination policy in the SIR epidemic model. Mathematical and Computer Modelling 31(4-5), 207–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wanner, E.F., Guimarães, F.G., Takahashi, R.H.C., Fleming, P.J.: Local search with quadratic approximations into memetic algorithms for optimization with multiple criteria. Evolutionary Computation 16(2), 185–224 (2008)

    Article  Google Scholar 

  23. Yang, T.: Impulsive control. IEEE Transactions on Automatic Control 44(5), 1081–1083 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zaman, G., Kang, Y.H., Jung, I.H.: Stability analysis and optimal vaccination of an SIR epidemic model. BioSystems 93(3), 240–249 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

da Cruz, A.R., Cardoso, R.T.N., Takahashi, R.H.C. (2011). Multiobjective Dynamic Optimization of Vaccination Campaigns Using Convex Quadratic Approximation Local Search. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds) Evolutionary Multi-Criterion Optimization. EMO 2011. Lecture Notes in Computer Science, vol 6576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19893-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19892-2

  • Online ISBN: 978-3-642-19893-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics