Advertisement

Introducing Reference Point Using g-Dominance in Optimum Design Considering Uncertainties: An Application in Structural Engineering

  • David Greiner
  • Blas Galván
  • José M. Emperador
  • Máximo Méndez
  • Gabriel Winter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6576)

Abstract

Considering uncertainties in engineering optimum design is often a requirement. Here, the use of the deterministic optimum design as the reference point in g-dominance is proposed. The multiobjective optimum robust design in a structural engineering test case where uncertainties in the external loads are taken into account is proposed as application, where the simultaneous minimization of the constrained weight average and the standard deviation of the constraints violation are the objective functions. Results include a comparison between both non-dominated sorting genetic algorithm II (NSGA-II) and strength Pareto evolutionary algorithm (SPEA2), including S-metric (hypervolume) statistical comparisons with and without the g-dominance approach. The methodology is capable to provide robust optimum structural frame designs successfully.

Keywords

Engineering Design Multiobjective Optimization Structural Optimization Frames Steel Structures Uncertainty g-dominance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Branke, J.: Consideration of Partial User Preferences in Evolutionary Multiobjective Optimization. In: Branke, J., et al. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 157–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm NSGAII. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  3. 3.
    Deb, K., Sundar, J., Bhaskara, U., Chaudhuri, S.: Reference Point Based Multi-Objective Optimization Using Evolutionary Algorithms. International Journal of Computational Intelligence Research 2(3), 273–286 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fishman, G.S.: Monte Carlo: Concepts, Algorithms and Applications. Springer Series in Operations Research. Springer, New York (1996)CrossRefzbMATHGoogle Scholar
  5. 5.
    Fonseca, C., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. IEEE Congress on Evolutionary Computation, 1157–1163 (2006)Google Scholar
  6. 6.
    Greiner, D., Winter, G., Emperador, J.M.: Optimising Frame Structures by different strategies of genetic algorithms. Fin Elem Anal. Des. 37(5), 381–402 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Greiner, D., Winter, G., Emperador, J.M.: A comparative study about the mutation rate in multiobjective frame structural optimization using evolutionary algorithms. In: Schilling, R., et al. (eds.) Proceedings of the Sixth Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems –EUROGEN–, Munich, Germany (2005)Google Scholar
  8. 8.
    Greiner, D., Winter, G., Emperador, J.M., Galván, B.: Gray Coding in Evolutionary Multicriteria Optimization: Application in Frame Structural Optimum Design. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 576–591. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Greiner, D., Emperador, J.M., Galván, B., Winter, G.: Robust optimum design of metallic frames under uncertain loads. In: Congress of Numerical Methods in Engineering, Barcelona, Spain (2009)Google Scholar
  10. 10.
    Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Chapman and Hall, New York (1964)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hernández Ibáñez S.: Structural Optimal Design Methods. Seinor Collection, Col. Ingenieros Caminos, Canales y Puertos, Madrid (1990)Google Scholar
  12. 12.
    Knowles, JD., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK-Report No. 214, Computer Engineering and Networks Laboratory, ETH Zurich (February 2006)Google Scholar
  13. 13.
    Kicinger, R., Arciszewski, T., De Jong, K.A.: structural design: A survey of the state of the art. Computers and Structures 83, 1943–1978 (2005)CrossRefGoogle Scholar
  14. 14.
    Lagaros, N.D., Papadrakakis, M.: Robust seismic design optimization of steel structures. Struct. Multidisc. Optim. 37, 457–469 (2007)CrossRefGoogle Scholar
  15. 15.
    Lagaros, N.D., Tsompanakis, Y., Fragiadakis, M., Plevris, V., Papadrakakis, M.: Metamodel-based computational techniques for solving structural optimization problems considering uncertainties. In: Tsompanakis, Y., Lagaros, N.D., Papadrakakis, M. (eds.) Structural Design Optimization considering Uncertainties. Structures and Infrastructures Series. Taylor & Francis, Taylor (2008)Google Scholar
  16. 16.
    Lee, D.S., Gonzalez, L.F., Periaux, J., Srinivas, K.: Robust design optimisation using multiobjective evolutionary algorithms. Comput. Fluids 37(5), 565–583 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Molina, J., Santana, L., Hernández-Díaz, A., Coello, C.A., Caballero, R.: g-dominance: Reference point based dominance for multiobjective metaheuristics. European Journal of Operational Research 197, 685–692 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Tsompanakis, Y., Lagaros, N.D., Papadrakakis, M.: Structural Design Optimization Considering Uncertainties. Structures & Infrastructures Series, vol. 1. Series Ed: Frangopol D.Taylor & Francis, USA (2008)zbMATHGoogle Scholar
  19. 19.
    Whitley, D., Rana, S., Heckendorn, R.: Representation Issues in Neighborhood Search and Evolutionary Algorithms. In: Quagliarella, D., Périaux, J., Poloni, C., Winter, G. (eds.) Genetic Algorithms and Evolution Strategies in Engineering and Computer Science, pp. 39–57. John Wiley & Sons, Chichester (1997)Google Scholar
  20. 20.
    Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., et al. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, CIMNE, pp. 95–100 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • David Greiner
    • 1
  • Blas Galván
    • 1
  • José M. Emperador
    • 1
  • Máximo Méndez
    • 1
  • Gabriel Winter
    • 1
  1. 1.Institute of Intelligent Systems and Numerical Applications in Engineering (SIANI)Universidad de Las Palmas de Gran CanariaSpain

Personalised recommendations