Skip to main content

Multi-objective Phylogenetic Algorithm: Solving Multi-objective Decomposable Deceptive Problems

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2011)

Abstract

In general, Multi-objective Evolutionary Algorithms do not guarantee find solutions in the Pareto-optimal set. We propose a new approach for solving decomposable deceptive multi-objective problems that can find all solutions of the Pareto-optimal set. Basically, the proposed approach starts by decomposing the problem into subproblems and, then, combining the found solutions. The resultant approach is a Multi-objective Estimation of Distribution Algorithm for solving relatively complex multi-objective decomposable problems, using a probabilistic model based on a phylogenetic tree. The results show that, for the tested problem, the algorithm can efficiently find all the solutions of the Pareto-optimal set, with better scaling than the hierarchical Bayesian Optimization Algorithm and other algorithms of the state of art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghagolzadeh, M., Soltanian-Zadeh, H., Araabi, B., Aghagolzadeh, A.: A hierarchical clustering based on mutual information maximization. In: IEEE International Conference on Image Processing, ICIP 2007, vol. 1 (2007)

    Google Scholar 

  2. Aporntewan, C., Ballard, D., Lee, J.Y., Lee, J.S., Wu, Z., Zhao, H.: Gene hunting of the Genetic Analysis Workshop 16 rheumatoid arthritis data using rough set theory. In: BMC Proceedings, vol. 3, p. S126. BioMed Central Ltd (2009)

    Google Scholar 

  3. Coello, C.A.C., Zacatenco, S.P., Pulido, G.T.: Multiobjective optimization using a micro-genetic algorithm (2001)

    Google Scholar 

  4. Day, W., Edelsbrunner, H.: Efficient algorithms for agglomerative hierarchical clustering methods. Journal of classification 1(1), 7–24 (1984)

    Article  MATH  Google Scholar 

  5. Deb, K.: Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary computation 7(3), 205–230 (1999)

    Article  MathSciNet  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K.: Multi-objective optimization using evolutionary algorithms (2001)

    Google Scholar 

  8. Dionísio, A., Menezes, R., Mendes, D.A.: Entropy-based independence test. Nonlinear Dynamics 44(1), 351–357 (2006)

    Article  MATH  Google Scholar 

  9. Felsenstein, J.: Inferring Phylogenies, vol. 266. Sinauer Associates (2003)

    Google Scholar 

  10. Harik, G.: Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms. Ph.D. thesis, The University of Michigan (1997)

    Google Scholar 

  11. Hughes, E.: Evolutionary many-objective optimisation: many once or one many? In: The 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 222–227. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  12. Johnson, S.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967)

    Article  MATH  Google Scholar 

  13. Kraskov, A.: Synchronization and Interdependence Measures and Their Application to the Electroencephalogram of Epilepsy Patients and Clustering of Data. Report Nr. NIC series 24 (2008)

    Google Scholar 

  14. Kraskov, A., Stogbauer, H., Andrzejak, R., Grassberger, P.: Hierarchical clustering based on mutual information. Arxiv preprint q-bio/0311039 (2003)

    Google Scholar 

  15. de Melo, V.V., Vargas, D.V., Delbem, A.C.B.: Uso de otimização contínua na resolução de problemas binários: um estudo com evolução diferencial e algoritmo filo-genético em problemas deceptivos aditivos.. In: 2a Escola Luso-Brasileira de Computação Evolutiva (ELBCE), APDIO (2010)

    Google Scholar 

  16. Morzy, T., Wojciechowski, M., Zakrzewicz, M.: Pattern-oriented hierarchical clustering. In: Eder, J., Rozman, I., Welzer, T. (eds.) ADBIS 1999. LNCS, vol. 1691, pp. 179–190. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  17. Pelikan, M., Goldberg, D., Lobo, F.: A survey of optimization by building and using probabilistic models. Computational optimization and applications 21(1), 5–20 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pelikan, M., Sastry, K., Cantu-Paz, E.: Scalable optimization via probabilistic modeling: From algorithms to applications. Springer, Heidelberg (2006)

    Book  MATH  Google Scholar 

  19. Pelikan, M., Sastry, K., Goldberg, D.: Multiobjective hBOA, clustering, and scalability. In: Genetic And Evolutionary Computation Conference: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 663–670. Association for Computing Machinery, Inc., New York (2005)

    Google Scholar 

  20. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4), 406 (1987)

    Google Scholar 

  21. Salemi, M., Vandamme, A.M.: The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny, vol. 16. Cambridge University Press, Cambridge (2003), http://doi.wiley.com/10.1002/ajhb.20017

    Google Scholar 

  22. Sastry, K., Goldberg, D., Pelikan, M.: Limits of scalability of multiobjective estimation of distribution algorithms. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2217–2224. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  23. Studier, J., Keppler, K.: A note on the neighbor-joining algorithm of Saitou and Nei. Molecular Biology and Evolution 5(6), 729 (1988)

    Google Scholar 

  24. Thierens, D.: Analysis and design of genetic algorithms. Katholieke Universiteit Leuven, Leuven (1995)

    Google Scholar 

  25. Vargas, D.V., Delbem, A.C.B.: Algoritmo filogenético. Tech. rep., Universidade de São Paulo (2009)

    Google Scholar 

  26. Vargas, D.V., Delbem, A.C.B., de Melo, V.V.: Algoritmo filo-genético. In: 2a Escola Luso-Brasileira de Computação Evolutiva (ELBCE), APDIO (2010)

    Google Scholar 

  27. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martins, J.P., Soares, A.H.M., Vargas, D.V., Delbem, A.C.B. (2011). Multi-objective Phylogenetic Algorithm: Solving Multi-objective Decomposable Deceptive Problems. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds) Evolutionary Multi-Criterion Optimization. EMO 2011. Lecture Notes in Computer Science, vol 6576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19893-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19892-2

  • Online ISBN: 978-3-642-19893-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics