Advertisement

Bilevel Multi-objective Optimization Problem Solving Using Progressively Interactive EMO

  • Ankur Sinha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6576)

Abstract

Bilevel multi-objective optimization problems are known to be highly complex optimization tasks which require every feasible upper-level solution to satisfy optimality of a lower-level optimization problem. Multi-objective bilevel problems are commonly found in practice and high computation cost needed to solve such problems motivates to use multi-criterion decision making ideas to efficiently handle such problems. Multi-objective bilevel problems have been previously handled using an evolutionary multi-objective optimization (EMO) algorithm where the entire Pareto set is produced. In order to save the computational expense, a progressively interactive EMO for bilevel problems has been presented where preference information from the decision maker at the upper level of the bilevel problem is used to guide the algorithm towards the most preferred solution (a single solution point). The procedure has been evaluated on a set of five DS test problems suggested by Deb and Sinha. A comparison for the number of function evaluations has been done with a recently suggested Hybrid Bilevel Evolutionary Multi-objective Optimization algorithm which produces the entire upper level Pareto-front for a bilevel problem.

Keywords

Genetic algorithms evolutionary algorithms bilevel optimization multi-objective optimization evolutionary programming multi-criteria decision making hybrid evolutionary algorithms sequential quadratic programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Byrd, R.H., Nocedal, J., Waltz, R.A.: KNITRO: An integrated package for nonlinear optimization, pp. 35–59. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  2. 2.
    Calamai, P.H., Vicente, L.N.: Generating quadratic bilevel programming test problems. ACM Trans. Math. Software 20(1), 103–119 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Annals of Operational Research 153, 235–256 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)zbMATHGoogle Scholar
  5. 5.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  6. 6.
    Deb, K., Sinha, A.: Constructing test problems for bilevel evolutionary multi-objective optimization. In: 2009 IEEE Congress on Evolutionary Computation (CEC-2009), pp. 1153–1160. IEEE Press, Los Alamitos (2009)CrossRefGoogle Scholar
  7. 7.
    Deb, K., Sinha, A.: An evolutionary approach for bilevel multi-objective problems. In: Cutting-Edge Research Topics on Multiple Criteria Decision Making, Communications in Computer and Information Science, vol. 35, pp. 17–24. Springer, Berlin (2009)Google Scholar
  8. 8.
    Deb, K., Sinha, A.: Solving bilevel multi-objective optimization problems using evolutionary algorithms. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 110–124. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Deb, K., Sinha, A.: An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm. Evolutionary Computation Journal 18(3), 403–449 (2010)CrossRefGoogle Scholar
  10. 10.
    Deb, K., Sinha, A., Korhonen, P., Wallenius, J.: An interactive evolutionary multi-objective optimization method based on progressively approximated value functions. IEEE Transactions on Evolutionary Computation 14(5), 723–739 (2010)CrossRefGoogle Scholar
  11. 11.
    Dempe, S., Dutta, J., Lohse, S.: Optimality conditions for bilevel programming problems. Optimization 55(5-6), 505–524 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Eichfelder, G.: Solving nonlinear multiobjective bilevel optimization problems with coupled upper level constraints. Technical Report Preprint No. 320, Preprint-Series of the Institute of Applied Mathematics, Univ. Erlangen-Närnberg, Germany (2007)Google Scholar
  13. 13.
    Fudenberg, D., Tirole, J.: Game theory. MIT Press, Cambridge (1993)zbMATHGoogle Scholar
  14. 14.
    Geoffrion, A.M.: Proper efficiency and theory of vector maximization. Journal of Mathematical Analysis and Applications 22(3), 618–630 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Halter, W., Mostaghim, S.: Bilevel optimization of multi-component chemical systems using particle swarm optimization. In: Proceedings of World Congress on Computational Intelligence (WCCI 2006), pp. 1240–1247 (2006)Google Scholar
  16. 16.
    Koh, A.: Solving transportation bi-level programs with differential evolution. In: 2007 IEEE Congress on Evolutionary Computation (CEC 2007), pp. 2243–2250. IEEE Press, Los Alamitos (2007)CrossRefGoogle Scholar
  17. 17.
    Mathieu, R., Pittard, L., Anandalingam, G.: Genetic algorithm based approach to bi-level linear programming. Operations Research 28(1), 1–21 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Oduguwa, V., Roy, R.: Bi-level optimization using genetic algorithm. In: Proceedings of the 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002), pp. 322–327 (2002)Google Scholar
  19. 19.
    Sinha, A., Deb, K.: Towards understanding evolutionary bilevel multi-objective optimization algorithm. In: IFAC Workshop on Control Applications of Optimization (IFAC 2009), vol. 7. Elsevier, Amsterdam (2009)Google Scholar
  20. 20.
    Sinha, A., Deb, K., Korhonen, P., Wallenius, J.: Progressively interactive evolutionary multi-objective optimization method using generalized polynomial value functions. In: 2010 IEEE Congress on Evolutionary Computation (CEC 2010), pp. 1–8. IEEE Press, Los Alamitos (2010)Google Scholar
  21. 21.
    Vicente, L.N., Calamai, P.H.: Bilevel and multilevel programming: A bibliography review. Journal of Global Optimization 5(3), 291–306 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, F.J., Periaux, J.: Multi-point optimization using gas and Nash/Stackelberg games for high lift multi-airfoil design in aerodynamics. In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), pp. 552–559 (2001)Google Scholar
  23. 23.
    Wang, Y., Jiao, Y.-C., Li, H.: An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 35(2), 221–232 (2005)CrossRefGoogle Scholar
  24. 24.
    Yin, Y.: Genetic algorithm based approach for bilevel programming models. Journal of Transportation Engineering 126(2), 115–120 (2000)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhang, G., Liu, J., Dillon, T.: Decentralized multi-objective bilevel decision making with fuzzy demands. Knowledge-Based Systems 20, 495–507 (2007)CrossRefGoogle Scholar
  26. 26.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., Tsahalis, D.T., Périaux, J., Papailiou, K.D., Fogarty, T. (eds.) Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, Athens, Greece, pp. 95–100. International Center for Numerical Methods in Engineering (Cmine) (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ankur Sinha
    • 1
  1. 1.Department of Business TechnologyAalto University School of EconomicsAaltoFinland

Personalised recommendations