Very Large-Scale Neighborhood Search for Solving Multiobjective Combinatorial Optimization Problems

  • Thibaut Lust
  • Jacques Teghem
  • Daniel Tuyttens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6576)


Very large-scale neighborhood search (VLSNS) is a technique intensively used in single-objective optimization. However, there is almost no study of VLSNS for multiobjective optimization. We show in this paper that this technique is very efficient for the resolution of multiobjective combinatorial optimization problems. Two problems are considered: the multiobjective multidimensional knapsack problem and the multiobjective set covering problem. VLSNS are proposed for these two problems and are integrated into the two-phase Pareto local search. The results obtained on biobjective instances outperform the state-of-the-art results for various indicators.


Multiobjective Optimization Travel Salesman Problem Travel Salesman Problem Knapsack Problem Variable Neighborhood Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Appl. Math. 123(1-3), 75–102 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alsheddy, A., Tsang, E.P.K.: Guided Pareto local search and its application to the 0/1 multi-objective knapsack problems. In: Proceedings of the Eighth Metaheuristic International Conference (MIC 2009), Hamburg (2009)Google Scholar
  3. 3.
    Alsheddy, A., Tsang, E.P.K.: Guided Pareto local search based frameworks for Pareto optimization. In: Proceedings of the WCCCI IEEE World Congress on Computational Intelligence, Barcelona (2010)Google Scholar
  4. 4.
    Alves, M.J., Almeida, M.: MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem. Computers & Operations Research 34, 3458–3470 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Management Science 25, 73–78 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Angel, E., Bampis, E., Gourvés, L.: A dynasearch neighborhood for the bicriteria traveling salesman problem. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 153–176. Springer, Berlin (2004)CrossRefGoogle Scholar
  7. 7.
    Barichard, V., Hao, J.K.: An empirical study of tabu search for the MOKP. In: Proceedings of the First International Workshop on Heuristics, China. Series of Information & Management Sciences, vol. 4, pp. 47–56 (2002)Google Scholar
  8. 8.
    Beausoleil, R.P., Baldoquin, G., Montejo, R.A.: Multi-start and path relinking methods to deal with multiobjective knapsack problems. Annals of Operations Research 157, 105–133 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis 7, 34–47 (1998)CrossRefzbMATHGoogle Scholar
  11. 11.
    Gomes da Silva, C., Clímaco, J., Figueira, J.R.: Scatter search method for the bi-criteria multi-dimensional {0,1}-knapsack problem using surrogate relaxation. Journal of Mathematical Modelling and Algorithms 3(3), 183–208 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, New York (2001)zbMATHGoogle Scholar
  13. 13.
    Ehrgott, M., Gandibleux, X.: Multiobjective combinatorial optimization. In: Ehrgott, M., Gandibleux, X. (eds.) Multiple Criteria Optimization – State of the Art Annotated Bibliographic Surveys, vol. 52, pp. 369–444. Kluwer Academic Publishers, Boston (2002)CrossRefGoogle Scholar
  14. 14.
    Gandibleux, X., Vancoppenolle, D., Tuyttens, D.: A first making use of GRASP for solving MOCO problems. In: 14th International Conference in Multiple Criteria Decision-Making, Charlottesville (1998)Google Scholar
  15. 15.
    Glover, F., Kochenberger, G.: Handbook of Metaheuristics. Kluwer, Boston (2003)CrossRefzbMATHGoogle Scholar
  16. 16.
    Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130(3), 449–467 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ishibuchi, H., Murada, T.: A multi-objective genetic local search algorithm and its application to flow shop scheduling. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews 28(3), 392–403 (1998)CrossRefGoogle Scholar
  18. 18.
    Jaszkiewicz, A.: Experiments done with the MOMHLIB: Technical report, Institute of Computing Science, Poznań University of Technology (2000),
  19. 19.
    Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search on the 0/1 Knapsack Problem—A Comparative Experiment. Technical Report RA-002/2000, Institute of Computing Science, Poznań University of Technology, Poznań, Poland (July 2000)Google Scholar
  20. 20.
    Jaszkiewicz, A.: A comparative study of multiple-objective metaheuristics on the bi-objective set covering problem and the Pareto memetic algorithm. Technical Report RA-003/01, Institute of Computing Science, Poznań University of Technology, Poznań, Poland (2001)Google Scholar
  21. 21.
    Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search on the 0/1 Knapsack Problem—A Comparative Experiment. IEEE Transactions on Evolutionary Computation 6(4), 402–412 (2002)CrossRefGoogle Scholar
  22. 22.
    Jaszkiewicz, A.: On the Computational Efficiency of Multiple Objective Metaheuristics. The Knapsack Problem Case Study. European Journal of Operational Research 158(2), 418–433 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lan, G., DePuy, G.W., Whitehouse, G.E.: An effective and simple heuristic for the set covering problem. European Journal of Operational Research 176(3), 1387–1403 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Laumanns, M., Thiele, L., Zitzler, E.: An adaptative scheme to generate the Pareto front based on the epsilon-constraint method. Technical Report 199, Technischer Bericht, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology, ETH (2004)Google Scholar
  25. 25.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Operations Research 21, 498–516 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lust, T., Teghem, J.: Memots: a memetic algorithm integrating tabu search for combinatorial multiobjective optimization. RAIRO: Operations Research 42(1), 3–33 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lust, T., Teghem, J.: The multiobjective multidimensionnal knapsack problem: a survey and a new approach. Technical Report arXiv:1007.4063v1, arXiv (2010)Google Scholar
  28. 28.
    Lust, T., Teghem, J.: Two-phase Pareto local search for the biobjective traveling salesman problem. Journal of Heuristics 16(3), 475–510 (2010)CrossRefzbMATHGoogle Scholar
  29. 29.
    Mavrotas, G., Figueira, J.R., Florios, K.: Solving the bi-objective multi-dimensional knapsack problem exploiting the concept of core. Applied Mathematics and Computation 215(7), 2502–2514 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Michalewicz, Z., Arabas, J.: Genetic algorithms for the 0/1 knapsack problem. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 134–143. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  31. 31.
    Paquete, L., Chiarandini, M., Stützle, T.: Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 177–199. Springer, Berlin (2004)CrossRefGoogle Scholar
  32. 32.
    Prins, C., Prodhon, C., Wolfler Calvo, R.: Two-phase method and lagrangian relaxation to solve the bi-objective set covering problem. Annals OR 147(1), 23–41 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Ulungu, E.L., Teghem, J.: Multiobjective combinatorial optimization problems: A survey. Journal of Multi-Criteria Decision Analysis 3, 83–104 (1994)CrossRefzbMATHGoogle Scholar
  34. 34.
    Vianna, D.S., Arroyo, J.E.C.: A GRASP algorithm for the multi-objective knapsack problem. In: QEST 2004: Proceedings of the The Quantitative Evaluation of Systems, First International Conference, pp. 69–75. IEEE Computer Society, Washington, DC (2004)Google Scholar
  35. 35.
    Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (November 1999)Google Scholar
  36. 36.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (May 2001)Google Scholar
  37. 37.
    Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thibaut Lust
    • 1
  • Jacques Teghem
    • 1
  • Daniel Tuyttens
    • 1
  1. 1.Laboratory of Mathematics & Operational ResearchFaculté Polytechnique de MonsMonsBelgium

Personalised recommendations