Advertisement

Preference Ranking Schemes in Multi-Objective Evolutionary Algorithms

  • Marlon Alexander Braun
  • Pradyumn Kumar Shukla
  • Hartmut Schmeck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6576)

Abstract

In recent years, multi-objective evolutionary algorithms have diversified their goal from finding an approximation of the complete efficient front of a multi-objective optimization problem, to integration of user preferences. These user preferences can be used to focus on a preferred region of the efficient front. Many such user preferences come from so called proper Pareto-optimality notions. Although, starting with the seminal work of Kuhn and Tucker in 1951, proper Pareto-optimal solutions have been around in the multi-criteria decision making literature, there are (surprisingly) very few studies in the evolutionary domain on this. In this paper, we introduce new ranking schemes of various state-of-the-art multi-objective evolutionary algorithms to focus on a preferred region corresponding to proper Pareto-optimal solutions. The algorithms based on these new ranking schemes are successfully tested on extensive benchmark test problems of varying complexity, with the aim to find the preferred region of the efficient front. This comprehensive study adequately demonstrates the efficiency of the developed multi-objective evolutionary algorithms in finding the complete preferred region for a large class of complex problems.

Keywords

Multiobjective Optimization User Preference Multiobjective Optimization Problem Prefer Region Ranking Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deb, K.: Innovization: Extracting innovative solution principles through multiobjective optimization. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Branke, J.: Consideration of partial user preferences in evolutionary multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 157–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Kuhn, H.W., Tucker, A.W.: In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, vol. 1950, pp. 481–492 (1951)Google Scholar
  4. 4.
    Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications 22, 618–630 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Makarov, E.K., Rachkovski, N.N.: Unified representation of proper efficiency by means of dilating cones. J. Optim. Theory Appl. 101, 141–165 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)zbMATHGoogle Scholar
  7. 7.
    Shukla, P.K., Hirsch, C., Schmeck, H.: A framework for incorporating trade-off information using multi-objective evolutionary algorithms. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 131–140. Springer, Heidelberg (2010)Google Scholar
  8. 8.
    Shukla, P.K.: In search of proper pareto-optimal solutions using multi-objective evolutionary algorithms. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4490, pp. 1013–1020. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Branke, J., Deb, K.: Integrating User Preferences into Evolutionary Multi-Objective Optimization. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 461–477. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)CrossRefGoogle Scholar
  11. 11.
    Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: On the effect of the steady-state selection scheme in multi-objective genetic algorithms. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 183–197. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.) EUROGEN 2001, Athens, Greece (2001)Google Scholar
  13. 13.
    Nebro, A., Durillo, J., García-Nieto, J., Coello Coello, C., Luna, F., Alba, E.: SMPSO: A new PSO-based metaheuristic for multi-objective optimization. In: MCDM 2009, pp. 66–73. IEEE Press, Los Alamitos (2009)Google Scholar
  14. 14.
    Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Durillo, J., Nebro, A., Alba, E.: The jmetal framework for multi-objective optimization: Design and architecture. In: CEC 2010, Barcelona, pp. 4138–4325 (2010)Google Scholar
  16. 16.
    Deb, K., Pratap, A., Meyarivan, T.: Constrained test problems for multi-objective evolutionary optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 284–298. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)zbMATHGoogle Scholar
  19. 19.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. In: Freitas, A.A., et al. (eds.) Evolutionary Multiobjective Optimization, pp. 105–145. Springer, London (2005)CrossRefGoogle Scholar
  20. 20.
    Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii. Trans. Evol. Comp. 13, 284–302 (2009)CrossRefGoogle Scholar
  21. 21.
    Huband, S., Hingston, P., Barone, L., White, L.: A review of multi-objective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation 10, 280–294 (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marlon Alexander Braun
    • 1
  • Pradyumn Kumar Shukla
    • 1
  • Hartmut Schmeck
    • 1
  1. 1.Institute AIFBKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations