Advertisement

Effects of the Existence of Highly Correlated Objectives on the Behavior of MOEA/D

  • Hisao Ishibuchi
  • Yasuhiro Hitotsuyanagi
  • Hiroyuki Ohyanagi
  • Yusuke Nojima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6576)

Abstract

Recently MOEA/D (multi-objective evolutionary algorithm based on decomposition) was proposed as a high-performance EMO (evolutionary multi-objective optimization) algorithm. MOEA/D has high search ability as well as high computational efficiency. Whereas other EMO algorithms usually do not work well on many-objective problems with four or more objectives, MOEA/D can properly handle them. This is because its scalarizing function-based fitness evaluation scheme can generate an appropriate selection pressure toward the Pareto front without severely increasing the computation load. MOEA/D can also search for well-distributed solutions along the Pareto front using a number of weight vectors with different directions in scalarizing functions. Currently MOEA/D seems to be one of the best choices for multi-objective optimization in various application fields. In this paper, we examine its performance on multi-objective problems with highly correlated objectives. Similar objectives to existing ones are added to two-objective test problems in computational experiments. Experimental results on multi-objective knapsack problems show that the inclusion of similar objectives severely degrades the performance of MOEA/D while it has almost no negative effects on NSGA-II and SPEA2. We also visually examine such an undesirable behavior of MOEA/D using many-objective test problems with two decision variables.

Keywords

Evolutionary multi-objective optimization evolutionary many-objective optimization similar objectives correlated objectives MOEA/D 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective Selection based on Dominated Hypervolume. European Journal of Operational Research 181, 1653–1669 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chang, P.C., Chen, S.H., Zhang, Q., Lin, J.L.: MOEA/D for Flowshop Scheduling Problems. In: Proc. of 2008 IEEE Congress on Evolutionary Computation, pp. 1433–1438 (2008)Google Scholar
  3. 3.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar
  4. 4.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6, 182–197 (2002)CrossRefGoogle Scholar
  5. 5.
    Fonseca, C.M., Fleming, P.J.: On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 584–593. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  7. 7.
    Hughes, E.J.: Evolutionary Many-Objective Optimization: Many Once or One Many? In: Proc. of 2005 IEEE Congress on Evolutionary Computation, pp. 222–227 (2005)Google Scholar
  8. 8.
    Hughes, E.J.: MSOPS-II: A General-Purpose Many-Objective Optimizer. In: Proc. of 2007 IEEE Congress on Evolutionary Computation, pp. 3944–3951 (2007)Google Scholar
  9. 9.
    Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Many-Objective Test Problems to Visually Examine the Behavior of Multiobjective Evolution in a Decision Space. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 91–100. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    Ishibuchi, H., Nojima, Y., Doi, T.: Comparison between Single-objective and Multi-objective Genetic Algorithms: Performance Comparison and Performance Measures. In: Proc. of 2006 IEEE Congress on Evolutionary Computation, pp. 3959–3966 (2006)Google Scholar
  11. 11.
    Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Evolutionary Many-objective Optimization by NSGA-II and MOEA/D with Large Populations. In: Proc. of 2009 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1820–1825 (2009)Google Scholar
  12. 12.
    Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Simultaneous Use of Different Scalarizing Functions in MOEA/D. In: Proc. of 2010 Genetic and Evolutionary Computation Conference, pp. 519–526 (2010)Google Scholar
  13. 13.
    Ishibuchi, H., Tsukamoto, N., Hitotsuyanagi, Y., Nojima, Y.: Effectiveness of Scalability Improvement Attempts on the Performance of NSGA-II for Many-Objective Problems. In: Proc. of 2008 Genetic and Evolutionary Computation Conference, pp. 649–656 (2008)Google Scholar
  14. 14.
    Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary Many-Objective Optimization: A Short Review. In: Proc. of 2008 IEEE Congress on Evolutionary Computation, pp. 2424–2431 (2008)Google Scholar
  15. 15.
    Jaszkiewicz, A.: On the Computational Efficiency of Multiple Objective Metaheuristics: The Knapsack Problem Case Study. European Journal of Operational Research 158, 418–433 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Khara, V., Yao, X., Deb, K.: Performance Scaling of Multi-objective Evolutionary Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 367–390. Springer, Heidelberg (2003)Google Scholar
  17. 17.
    Konstantinidis, A., Yang, K., Zhang, Q.F., Zeinalipour-Yazti, D.: A Multi-objective Evolutionary Algorithm for the Deployment and Power Assignment Problem in Wireless Sensor Networks. Computer Networks 54, 960–976 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Köppen, M., Yoshida, K.: Substitute Distance Assignments in NSGA-II for Handling Many-objective Optimization Problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727–741. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Li, H., Zhang, Q.F.: A Multiobjective Differential Evolution Based on Decomposition for Multiobjective Optimization with Variable Linkages. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 583–592. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Li, H., Zhang, Q.: Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D and NSGA-II. IEEE Trans. on Evolutionary Computation 13, 284–302 (2009)CrossRefGoogle Scholar
  21. 21.
    Murata, T., Ishibuchi, H., Gen, M.: Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 82–95. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Peng, W., Zhang, Q., Li, H.: Comparison between MOEA/D and NSGA-II on the Multi-objective Travelling Salesman Problem. In: Goh, C.K., Ong, Y.S., Tan, K.C. (eds.) Multi-Objective Memetic Algorithms, pp. 309–324. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Purshouse, R.C., Fleming, P.J.: Evolutionary Many-Objective Optimization: An Exploratory Analysis. In: Proc. of 2003 IEEE Congress on Evolutionary Computation, pp. 2066–2073 (2003)Google Scholar
  24. 24.
    Purshouse, R.C., Fleming, P.J.: On the Evolutionary Optimization of Many Conflicting Objectives. IEEE Trans. on Evolutionary Computation 11, 770–784 (2007)CrossRefGoogle Scholar
  25. 25.
    Singh, H., Isaacs, A., Ray, T., Smith, W.: A Study on the Performance of Substitute Distance Based Approaches for Evolutionary Many Objective Optimization. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 401–410. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Tan, K.C., Khor, E.F., Lee, T.H.: Multiobjective Evolutionary Algorithms and Applications. Springer, Berlin (2005)zbMATHGoogle Scholar
  27. 27.
    Ulrich, T., Bader, J., Zitzler, E.: Integrating Decision Space Diversity into Hypervolume-Based Multiobjective Search. In: Proc. of 2010 Genetic and Evolutionary Computation Conference, pp. 455–462 (2010)Google Scholar
  28. 28.
    Wagner, T., Beume, N., Naujoks, B.: Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. on Evolutionary Computation 11, 712–731 (2007)CrossRefGoogle Scholar
  30. 30.
    Zhang, Q.F., Liu, W.D., Tsang, E., Virginas, B.: Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model. IEEE Trans. on Evolutionary Computation 14, 456–474 (2010)CrossRefGoogle Scholar
  31. 31.
    Zitzler, E., Brockhoff, D., Thiele, L.: The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  32. 32.
    Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Zitzler, E., Laumanns, M., Thiele L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-Report 103, Computer Engineering and Networks Laboratory (TIK), Department of Electrical Engineering, ETH, Zurich (2001)Google Scholar
  34. 34.
    Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3, 257–271 (1999)CrossRefGoogle Scholar
  35. 35.
    Zou, X., Chen, Y., Liu, M., Kang, L.: A New Evolutionary Algorithm for Solving Many-Objective Optimization Problems. IEEE Trans. on Systems, Man, and Cybernetics: Part B - Cybernetics 38, 1402–1412 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hisao Ishibuchi
    • 1
  • Yasuhiro Hitotsuyanagi
    • 1
  • Hiroyuki Ohyanagi
    • 1
  • Yusuke Nojima
    • 1
  1. 1.Department of Computer Science and Intelligent Systems, Graduate School of EngineerigOsaka Prefecture UniversitySakaiJapan

Personalised recommendations