Skip to main content

Map Partitioning to Approximate an Exploration Strategy in Mobile Robotics

  • Conference paper

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 88))

Abstract

In this paper, we present an approach to automatically allocate a set of exploration tasks between a fleet of mobile robots. Our approach combines a RoadMap technique and Markovian Decision Processes (MDPs).We are interested in the problem of exploring an area where several robots need to visit a set of points of interest. This problem induces a long term horizon motion planning with a combinatorial explosion. The RoadMap allows us to represent spatial knowledge as a graph of paths. It can be modified during the exploration mission requiring the robots to use on-line computation. By decomposing the RoadMap into regions, an MDP allows the leader robot to evaluate the interest of each robot in every single region. Using those values, the leader can assign the exploration tasks to the robots.

Supported by the Nationnal Reserch Agency of France (ANR) through the R-Discover project.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burgard, W., Moors, M., Stachniss, C., Schneider, F.: Coordinated multi-robot exploration. IEEE Transactions on Robotics 21, 376–386 (2005)

    Article  Google Scholar 

  2. Kavraki, L., Svestka, P., claude Latombe, J., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. In: IEEE International Conference on Robotics and Automation, pp. 566–580 (1996)

    Google Scholar 

  3. Adouane, L.: Hybrid and safe control architecture for mobile robot navigation. In: 9th Conference on Autonomous Robot Systems and Competitions, Portugal (May 2009)

    Google Scholar 

  4. Foka, A.F., Trahanias, P.E.: Real-time hierarchical pomdps for autonomous robot navigation. Robotics and Autonomous Systems 55(7), 561–571 (2007)

    Article  Google Scholar 

  5. Teichteil-Königsbuch, F., Fabiani, P.: Autonomous search and rescue rotorcraft mission stochastic planning with generic dbns. In: IFIP AI, pp. 483–492 (2006)

    Google Scholar 

  6. Bayazit, O., Lien, J., Amato, N.: Swarming behavior using probabilistic roadmap techniques. In: Swarm robotics: SAB International Workshop, Santa Monica, USA (July 2004)

    Google Scholar 

  7. Kuipers, B., tai Byun, Y.: A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Journal of Robotics and Autonomous Systems 8, 47–63 (1991)

    Article  Google Scholar 

  8. Alterovitz, R., Siméon, T., Goldberg, K.: The stochastic motion roadmap: A sampling framework for planning with markov motion uncertainty. In: Robotics: Science and Systems (2007)

    Google Scholar 

  9. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc., Chichester (1994)

    MATH  Google Scholar 

  10. Bellman, R.: A markovian decision process. Journal of Mathematics and Mechanics 6, 679–684 (1957)

    MATH  Google Scholar 

  11. Dean, T., hong Lin, S., hong Lin, S.: Decomposition techniques for planning in stochastic domains. In: 14th International Joint Conference on Artificial Intelligence (1995)

    Google Scholar 

  12. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assumptions and computational leverage. Journal of Artificial Intelligence Research 11, 1–94 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete problems. In: 6h Symposium on Theory of Computing, pp. 47–63. ACM, New York (1974)

    Google Scholar 

  14. Bichot, C.-E., Siarry, P.: Graph Partitioning. Wiley-ISTE (2011)

    Google Scholar 

  15. Parr, R.: Flexible decomposition algorithms for weakly coupled markov decision problems. In: 14th Conference on Uncertainty in Artificial Intelligence, pp. 422–430 (1998)

    Google Scholar 

  16. Sabbadin, R.: Graph partitioning techniques for markov decision processes decomposition. In: 15th Eureopean Conference on Artificial Intelligence, pp. 670–674 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lozenguez, G., Adouane, L., Beynier, A., Martinet, P., Mouaddib, AI. (2011). Map Partitioning to Approximate an Exploration Strategy in Mobile Robotics. In: Demazeau, Y., Pěchoucěk, M., Corchado, J.M., Pérez, J.B. (eds) Advances on Practical Applications of Agents and Multiagent Systems. Advances in Intelligent and Soft Computing, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19875-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19875-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19874-8

  • Online ISBN: 978-3-642-19875-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics