Approximate Shortest Paths in Simple Polyhedra

  • Fajie Li
  • Reinhard Klette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)


Since the pioneering work by (Cohen and Kimmel, 1997) on finding a contour as a minimal path between two end points, shortest paths in volume images have raised interest in computer vision and image analysis. This paper considers the calculation of a Euclidean shortest path (ESP) in a three-dimensional (3D) polyhedral space Π. We propose an approximate \(\kappa(\varepsilon) \cdot {\cal O}(M|V|)\) 3D ESP algorithm, not counting time for preprocessing. The preprocessing time complexity equals \({\cal O}(M|E| + |{\cal F}| + |V|\log|V|)\) for solving a special, but ‘fairly general’ case of the 3D ESP problem, where Π does not need to be convex. V and E are the sets of vertices and edges of Π, respectively, and \({\cal F}\) is the set of faces (triangles) of Π. M is the maximal number of vertices of a so-called critical polygon, and κ(ε) = (L 0 − L)/ε where L 0 is the length of an initial path and L is the true (i.e., optimum) path length. The given algorithm solves approximately three (previously known to be) NP-complete or NP-hard 3D ESP problems in time \(\kappa(\varepsilon) \cdot {\cal O}(k)\), where k is the number of layers in a stack, which is introduced in this paper as being the problem environment. The proposed approximation method has straightforward applications for ESP problems when analyzing polyhedral objects (e.g., in 3D imaging), of for ‘flying’ over a polyhedral terrain.


Short Path Minimal Path Simple Polygon Fast Marching Simple Polyhedron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agarwal, P.K., Sharathkumar, R., Yu, H.: Approximate Euclidean shortest paths amid convex obstacles. In: Proc. ACM-SIAM Sympos. Discrete Algorithms, pp. 283–292 (2009)Google Scholar
  2. 2.
    Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Approximation algorithms for geometric shortest path problems. In: Proc. ACM Sympos. Theory Comput., pp. 286–295 (2000)Google Scholar
  3. 3.
    Bajaj, C.: The algebraic complexity of shortest paths in polyhedral spaces. In: Proc. Allerton Conf. Commun. Control Comput., pp. 510–517 (1985)Google Scholar
  4. 4.
    Balasubramanian, M., Polimeni, J.R., Schwartz, E.L.: Exact geodesics and shortest paths on polyhedral surfaces. IEEE Trans. Pattern Analysis Machine Intelligence 31, 1006–1016 (2009)CrossRefGoogle Scholar
  5. 5.
    Benmansour, F., Cohen, L.D.: Fast object segmentation by growing minimal paths from a single point on 2D or 3D images. J. Math. Imaging Vision 33, 209–221 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Buelow, T., Klette, R.: Rubber band algorithm for estimating the length of digitized space-curves. In: Proc. ICPR, vol. III, pp. 551–555. IEEE, Los Alamitos (2000)Google Scholar
  7. 7.
    Canny, J., Reif, J.H.: New lower bound techniques for robot motion planning problems. In: Proc. IEEE Conf. Foundations Computer Science, pp. 49–60 (1987)Google Scholar
  8. 8.
    Choi, J., Sellen, J., Yap, C.-K.: Precision-sensitive Euclidean shortest path in 3-space. In: Proc. ACM Sympos. Computational Geometry, pp. 350–359 (1995)Google Scholar
  9. 9.
    Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In: Proc. ACM Sympos. Theory Comput., pp. 56–65 (1987)Google Scholar
  10. 10.
    Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Computer Vision 24, 57–78 (1997)CrossRefGoogle Scholar
  11. 11.
    Deschamps, T., Cohen, L.D.: Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med. Image Anal. 5, 281–299 (2001)CrossRefGoogle Scholar
  12. 12.
    Har-Peled, S.: Constructing approximate shortest path maps in three dimensions. In: Proc. ACM Sympos. Computational Geometry, pp. 125–130 (1998)Google Scholar
  13. 13.
    Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  14. 14.
    Li, F., Klette, R.: The Class of Simple Cube-Curves Whose MLPs Cannot Have Vertices at Grid Points. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 183–194. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Li, F., Klette, R.: Exact and approximate algorithms for the calculation of shortest paths. IMA Minneapolis, Report 2141(2006),
  16. 16.
    Li, F., Klette, R.: Rubberband algorithms for solving various 2D or 3D shortest path problems. In: Proc. Computing: Theory and Applications, The Indian Statistical Institute, Kolkata, pp. 9–18. IEEE, Los Alamitos (2007)Google Scholar
  17. 17.
    Li, F., Klette, R.: Analysis of the rubberband algorithm. Image Vision Computing 25, 1588–1598 (2007)CrossRefGoogle Scholar
  18. 18.
    Liu, Y.A., Stoller, S.D.: Optimizing Ackermann’s function by incrementalization. In: Proc. ACM SIGPLAN Sympos. Partial Evaluation Semantics-Based Program Manipulation, pp. 85–91 (2003)Google Scholar
  19. 19.
    Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)CrossRefGoogle Scholar
  20. 20.
    Mitchell, J.S.B., Sharir, M.: New results on shortest paths in three dimensions. In: Proc. ACM Sympos. Computational Geometry, pp. 124–133 (2004)Google Scholar
  21. 21.
    Papadimitriou, C.H.: An algorithm for shortest path motion in three dimensions. Inform. Processing Letters 20, 259–263 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pan, X., Li, F., Klette, R.: Approximate shortest path algorithms for sequences of pairwise disjoint simple polygons. In: Proc. Canadian Conf. Computational Geometry, Winnipeg, Canada, pp. 1–4 (2010)Google Scholar
  23. 23.
    Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Comput. 15, 193–215 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wachsmuth, B.G.: Interactive real analysis, (last visit: May, 2009)
  25. 25.
    Yap, C.-K.: Towards exact geometric computation. Computational Geometry: Theory Applications 7, 3–23 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wang, Y., Peterson, B.S., Staib, L.H.: 3D brain surface matching based on geodesics and local geometry. Computer Vision Image Understanding 89, 252–271 (2003)CrossRefGoogle Scholar
  27. 27.
    Zadeh, H.Z.: Flying over a polyhedral terrain. Inform. Processing Letters 105, 103–107 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fajie Li
    • 1
  • Reinhard Klette
    • 2
  1. 1.College of Computer Science and TechnologyHuaqiao UniversityXiamenChina
  2. 2.Computer Science DepartmentThe University of AucklandAucklandNew Zealand

Personalised recommendations