Advertisement

An Arithmetic and Combinatorial Approach to Three-Dimensional Discrete Lines

  • Valérie Berthé
  • Sébastien Labbé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)

Abstract

The aim of this paper is to discuss from an arithmetic and combinatorial viewpoint a simple algorithmic method of generation of discrete segments in the three-dimensional space. We consider discrete segments that connect the origin to a given point (u 1,u 2,u 3) with coprime nonnegative integer coordinates. This generation method is based on generalized three-dimensional Euclid’s algorithms acting on the triple (u 1,u 2,u 3). We associate with the steps of the algorithm substitutions, that is, rules that replace letters by words, which allow us to generate the Freeman coding of a discrete segment. We introduce a dual viewpoint on these objects in order to measure the quality of approximation of these discrete segments with respect to the corresponding Euclidean segment. This viewpoint allows us to relate our discrete segments to finite patches that generate arithmetic discrete planes in a periodic way.

Keywords

Discrete Segments Discrete Lines Christoffel words multi-dimensional Euclid’s algorithms multi-dimensional continued fractions substitutions 

References

  1. 1.
    Andres, E.: Discrete linear objects in dimension n: the standard model. Graphical Models 65, 92–111 (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Arnoux, P., Ito, S.: Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8(2), 181–207 (2001)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Arnoux, P., Mauduit, C., Shiokawa, I., Tamura, J.I.: Complexity of sequences defined by billiards in the cube. Bull. Soc. Math. France 122, 1–12 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n + 1. Bull. Soc. Math. France 119, 199–215 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berthé, V., Ferenczi, S., Zamboni, L.Q.: Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly. In: Algebraic and Topological Dynamics, Contemp. Math., vol. 385, pp. 333–364. Amer. Math. Soc., Providence (2005)CrossRefGoogle Scholar
  6. 6.
    Berthé, V., Lacasse, A., Paquin, G., Provençal, X.: A study of Jacobi-Perron boundary words for the generation of discrete planes. Preprint (2010)Google Scholar
  7. 7.
    Berthé, V., de Luca, A., Reutenauer, C.: On an involution of Christoffel words and Sturmian morphisms. European Journal of Combinatorics 29, 535–553 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brimkov, V.E., Barneva, R.P., Brimkov, B., de Vieilleville, F.: Offset approach to defining 3D digital lines. In: Advances in Visual Computing, pp. 678–687 (2008)Google Scholar
  9. 9.
    Brimkov, V.E., Barneva, R.P., Brimkov, B.: Minimal offsets that guarantee maximal or minimal connectivity of digital curves in nD. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 337–349. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Broise-Alamichel, A., Guivarc’h, Y.: Exposants caractéristiques de l’algorithme de Jacobi-Perron et de la transformation associée. Ann. Inst. Fourier (Grenoble) 51(3), 565–686 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fernique, T.: Generation and recognition of digital planes using multi-dimensional continued fractions. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 33–44. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Figueiredo, O., Reveillès, J.P.: New results about 3d digital lines. In: Proc. Internat. Conference Vision Geometry V, Proc. SPIE, vol. 2826, pp. 98–108 (1996)Google Scholar
  13. 13.
    Hubert, P.: Suites équilibrées. Theoret. Comput. Sci. 242, 91–108 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Klette, R., Rosenfeld, A.: Digital straightness-a review. Discrete Applied Mathematics 139, 197–230 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse de Doctorat, Université Louis Pasteur, Strasbourg (1991)Google Scholar
  17. 17.
    Schweiger, F.: Multidimensinal Continued Fraction. Oxford Univ. Press, New York (2000)Google Scholar
  18. 18.
    Toutant, J.L.: Characterization of the closest discrete approximation of a line in the 3-Dimensional space. In: Advances in Visual Computing, pp. 618–627 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Valérie Berthé
    • 1
  • Sébastien Labbé
    • 2
  1. 1.Laboratoire d’Informatique Algorithmique : Fondements et ApplicationsUniversité Paris DiderotParis Cedex 13France
  2. 2.Laboratoire de Combinatoire et d’Informatique MathématiqueUniversité du Québec à MontréalMontréalCanada

Personalised recommendations