Advertisement

Image Denoising with a Constrained Discrete Total Variation Scale Space

  • Igor Ciril
  • Jérôme Darbon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)

Abstract

This paper describes an approach for performing image restoration using a coupled differential system that both simplifies the image while preserving its contrast. The first process corresponds to a differential inclusion involving discrete Total Variations that simplifies more and more the observed image as time evolves. The second one extracts some pertinent geometric information contained in the series of simplified images and recovers the constrast using Bregman distances. Convergence and exact computational properties of the method rely on the discrete and combinatorial properties of discrete Total Variations.

Keywords

Discrete Total Variation Bregman Distances Differential Inclusions Network Flows 

References

  1. 1.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  2. 2.
    Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Heidelberg (1984)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bouman, C., Sauer, K.: A generalized gaussian image model for edge-preserving map estimation. IEEE Transactions on Transactions on Signal Processing 2(3), 296–310 (1993)CrossRefGoogle Scholar
  4. 4.
    Burger, M., Gilboa, G., Osher, S., Xu, J.: Nonlinear inverse scale space methods. Communications in Mathematical Sciences 5(1), 175–208 (2006)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chalmond, B.: Modeling and Inverse Problems in Image Analysis. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric maximum flows. International Journal of Computer Vision 84(3), 288–307 (2009)CrossRefGoogle Scholar
  7. 7.
    Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Num. Math. (76), 167–188 (1997)Google Scholar
  8. 8.
    Charbonnier, P., Blanc-Féraud, L., Barlaud, M., Aubert, G.: Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image Processing 5(2), 298–311 (1997)CrossRefGoogle Scholar
  9. 9.
    Darbon, J.: In preparation. Tech. rep. (2010)Google Scholar
  10. 10.
    Darbon, J., Ciril, I., Marquina, A., Chan, T., Osher, S.: A note on the bregmanized total variation and dual forms. In: 16th IEEE International Conference on Image Processing (ICIP), pp. 2965–2968 (November 2009)Google Scholar
  11. 11.
    Darbon, J., Sigelle, M.: Image restoration with discrete constrained Total Variation part I: Fast and exact optimization. Journal of Mathematical Imaging and Vision 26(3), 261–276 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(3), 367–383 (1992)CrossRefGoogle Scholar
  13. 13.
    Gilboa, G., Darbon, J., Osher, S., Chan, T.F.: Nonlocal convex functionals for image regularization. Tech. Rep. CAM-06-57, UCLA (October 2006)Google Scholar
  14. 14.
    Gilboa, G., Sochen, N., Zeevi, Y.Y.: Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Transcations on Image Processing 11(2), 689–703 (2002)CrossRefGoogle Scholar
  15. 15.
    Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms Part I. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  16. 16.
    Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms Part II. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  17. 17.
    Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. University Lecture Series, vol. 22. American Mathematical Society, Providence (2001); the fifteenth Dean Jacqueline B. Lewis memorial lectureszbMATHGoogle Scholar
  18. 18.
    Nikolova, M., Chan, R.H.: The equivalence of half-quadratic minimization and the gradient linearization iteration. IEEE Transactions on Image Processing 16(6), 1623–1627 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nikolova, M., Ng, M.: Analysis of half-quadratic minimization methods for signal and image recovery. SIAM Journal on Scientific Computing 27(3), 937–9660 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An Iterative Regularization Method for Total Variation Based Image Restoration. SIAM Journal on Multiscale Modeling and Application 4, 460–489 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rockafellar, R.T.: Network Flows and Monotropic Optimization. John Wiley & Sons, Chichester (1984)zbMATHGoogle Scholar
  22. 22.
    Rockafellar, R.T., Wets, R.: Variational Analysis. Springer, Heidelberg (1998)CrossRefzbMATHGoogle Scholar
  23. 23.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Strong, D., Chan, T.F.: Edge-Preserving and Scale-Dependent Properties of Total Variation Regularization. Inverse Problems 9, S165–S187 (2000)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Winkler, G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Applications of Mathematics. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Igor Ciril
    • 1
  • Jérôme Darbon
    • 2
  1. 1.LMCS, IPSAFrance
  2. 2.CMLA, ENS Cachan, CNRS, PRES UniverSudFrance

Personalised recommendations