Advertisement

Selection of Relevant Nodes from Component-Trees in Linear Time

  • Nicolas Passat
  • Benoît Naegel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)

Abstract

Component-trees associate to a discrete grey-level image a descriptive data structure induced by the inclusion relation between the binary components obtained at successive level-sets. This article presents a method to extract a subset of the component-tree of an image enabling to fit at best a given binary target selected beforehand in the image. A proof of the algorithmic efficiency of this method is proposed. Application examples related to the extraction of drop caps from ancient documents emphasise the usefulness of this technique in the context of assisted segmentation.

Keywords

component-tree image analysis grey-level images 

References

  1. 1.
    Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Computer Vision and Image Understanding 64(3), 377–389 (1996)CrossRefGoogle Scholar
  2. 2.
    Hanusse, P., Guillataud, P.: Sémantique des images par analyse dendronique. In: RFIA 1991, vol. 2, pp. 577–588 (1991)Google Scholar
  3. 3.
    Jones, R.: Connected filtering and segmentation using component trees. Computer Vision and Image Understanding 75(3), 215–228 (1999)CrossRefGoogle Scholar
  4. 4.
    Mattes, J., Demongeot, J.: Efficient algorithms to implement the confinement tree. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 392–405. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Mattes, J., Richard, M., Demongeot, J.: Tree representation for image matching and object recognition. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 298–312. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    McGuinness, K., O’Connor, N.E.: A comparative evaluation of interactive segmentation algorithms. Pattern Recognition 43(2), 434–444 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Naegel, B., Wendling, L.: Combining shape descriptors and component-tree for recognition of ancient graphical drop caps. In: VISAPP 2009, vol. 2, pp. 297–302 (2009)Google Scholar
  8. 8.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Transactions on Image Processing 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  9. 9.
    Ouzounis, G.K., Wilkinson, M.H.F.: Mask-based second-generation connectivity and attribute filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 990–1004 (2007)CrossRefGoogle Scholar
  10. 10.
    Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Transactions on Image Processing 7(4), 555–570 (1998)CrossRefGoogle Scholar
  11. 11.
    Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(2), 272–285 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nicolas Passat
    • 1
  • Benoît Naegel
    • 2
  1. 1.LSIIT, UMR CNRS 7005Université de StrasbourgFrance
  2. 2.LORIA, UMR CNRS 7503Université Nancy 1France

Personalised recommendations