Bounds on the Difference between Reconstructions in Binary Tomography

  • K. Joost Batenburg
  • Wagner Fortes
  • Lajos Hajdu
  • Robert Tijdeman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)


Tomography is concerned with the reconstruction of images from their projections. In this paper, we consider the reconstruction problem for a class of tomography problems, where the images are restricted to binary grey levels. For any given set of projections, we derive an upper bound on the difference between any two binary images having these projections, and a bound on the difference between a particular binary image and any binary image having the given projections. Both bounds are evaluated experimentally for different geometrical settings, based on simulated projection data for a range of images.


Binary Image Grid Model Projection Matrix Binary Solution Projection Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alpers, A.: Instability and Stability in Discrete Tomography. Ph.D. thesis, Technische Universität München. Shaker Verlag, Aachen (2003) ISBN 3-8322-2355-XGoogle Scholar
  2. 2.
    Alpers, A., Brunetti, S.: Stability results for the reconstruction of binary pictures from two projections. Image and Vision Computing 25(10), 1599–1608 (2007)CrossRefGoogle Scholar
  3. 3.
    Alpers, A., Gritzmann, P.: On stability, error correction, and noise compensation in discrete tomography. SIAM Journal on Discrete Mathematics 20(1), 227–239 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ben-israel, A., Greville, T.N.E.: Generalized inverses: Theory and applications. Canadian Math. Soc. (2002)Google Scholar
  5. 5.
    Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. J. Reine Angew. Math. 534, 119–128 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Herman, G.T.: Fundamentals of Computerized Tomography: Image reconstruction from projections. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser, Boston (1999)zbMATHGoogle Scholar
  8. 8.
    Herman, G.T., Kuba, A. (eds.): Advances in Discrete Tomography and its Applications. Birkhäuser, Boston (2007)Google Scholar
  9. 9.
    Jinschek, J.R., Batenburg, K.J., Calderon, H.A., Kilaas, R., Radmilovic, V., Kisielowski, C.: 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography. Ultramicroscopy 108(6), 589–604 (2007)CrossRefGoogle Scholar
  10. 10.
    Midgley, P.A., Dunin-Borkowski, R.E.: Electron tomography and holography in materials science. Nature Materials 8(4), 271–280 (2009)CrossRefGoogle Scholar
  11. 11.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Van der Sluis, A., Van der Vorst, H.A.: SIRT and CG-type methods for the iterative solution of sparse linear least-squares problems. Linear Algebra Appl. 130, 257–302 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Van Dalen, B.: On the difference between solutions of discrete tomography problems. Journal of Combinatorics and Number Theory 1, 15–29 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Van Dalen, B.: On the difference between solutions of discrete tomography problems II. Pure Mathematics and Applications 20, 103–112 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Van Dalen, B.: Stability results for uniquely determined sets from two directions in discrete tomography. Discrete Mathematics 309, 3905–3916 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhua, J., Li, X., Ye, Y., Wang, G.: Analysis on the strip-based projection model for discrete tomography. Discrete Appl. Math. 156(12), 2359–2367 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • K. Joost Batenburg
    • 1
    • 2
  • Wagner Fortes
    • 1
    • 3
  • Lajos Hajdu
    • 4
    • 5
  • Robert Tijdeman
    • 3
  1. 1.Centrum Wiskunde & InformaticaAmsterdamThe Netherlands
  2. 2.Vision LabUniversity of AntwerpBelgium
  3. 3.Mathematical InstituteLeiden UniversityThe Netherlands
  4. 4.Institute of MathematicsUniversity of DebrecenHungary
  5. 5.Number Theory Research Group of the Hungarian Academy of SciencesDebrecenHungary

Personalised recommendations