Optimal Consensus Set for Annulus Fitting

  • Rita Zrour
  • Gaëlle Largeteau-Skapin
  • Eric Andres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)


An annulus is defined as a set of points contained between two circles. This paper presents a method for fitting an annulus to a given set of points in a 2D images in the presence of noise by maximizing the number of inliers, namely the consensus set, while fixing the thickness. We present a deterministic algorithm that searches the optimal solution(s) within a time complexity of O(N 4), N being the number of points.


Digital geometry shape fitting consensus set outliers digital arc annulus 


  1. 1.
    Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points. Journal of the ACM 51(4), 606–635 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Andres, E., Jacob, M.A.: The discrete analytical hyperspheres. IEEE Transactions on Visualization and Computer Graphics 3, 75–86 (1997)CrossRefGoogle Scholar
  3. 3.
    Coeurjolly, D., Gérard, Y., Reveillès, J.P., Tougne, L.: An elementary algorithm for digital arc segmentation. Discrete Applied Mathematics 139(1-3), 31–50 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Da Fontoura Da Costa, L., Cesar Jr., R.M.: Shape analysis and classification: Theory and practice, 1st edn. CRC Press, Inc., Boca Raton (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    De Berg, M., Bose, P., Bremner, D., Ramaswami, S., Ramaswami, G.: Computing constrained minimum-width annuli of point sets. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 392–401. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Ding, D., Ping, X., Hu, M., Wang, D.: Range image segmentation based on randomized hough transform. Pattern Recognition Letters 26(13), 2033–2041 (2005)CrossRefGoogle Scholar
  7. 7.
    Dunagan, J., Vempala, S.: Optimal outlier removal in high-dimensional spaces. Journal of Computer and System Sciences 68(2), 335–373 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dyer, M.E.: Linear time algorithms for two- and three-variable linear programs. SIAM Journal on Computing 13(1), 31–45 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Har-Peled, S., Wang, Y.: Shape fitting with outliers. SIAM Journal on Computing 33(2), 269–285 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Matousek, J.: On enclosing k points by a circle. Information Processing Letters 53(4), 217–221 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Megiddo, N.: Linear-time algorithms for linear programming in r 3 and related problems. SIAM Journal on Computing 12(4), 759–776 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    O’Rourke, J., Kosaraju, S.R., Megiddo, N.: Computing circular separability. Discrete and Computational Geometry 1, 105–113 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rouche, E., de Comberousse, C., Poincare, H.: Traité de géométrie. Edition Jacques Gabay (1900), tomes I et II, 7e édition, Reprint (1997)Google Scholar
  15. 15.
    Roussillon, T., Sivignon, S., Tougne, L.: On three constrained versions of the digital circular arc recognition problem. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 34–45. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Smid, M., Janardan, R.: On the width and roundness of a set of points in the plane. International Journal of Computational Geometry 9(1), 97–108 (1999)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Zrour, R., Kenmochi, K., Talbot, H., Buzer, L., Hamam, Y., Shimizu, I., Sugimoto, A.: Optimal consensus set for digital plane fitting. In: Proceedings of 3DIM 2009 ICCV Satellite Workshop, pp. 1817–1824 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rita Zrour
    • 1
  • Gaëlle Largeteau-Skapin
    • 1
  • Eric Andres
    • 1
  1. 1.Laboratory XLIM, SIC DepartmentUniversity of Poitiers BP 30179, UMR CNRS 6712Futuroscope Chasseneuil CedexFrance

Personalised recommendations