Advertisement

Computing the Characteristics of a SubSegment of a Digital Straight Line in Logarithmic Time

  • Mouhammad Said
  • Jacques-Olivier Lachaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)

Abstract

We address the problem of computing the exact characteristics of any subsegment of a digital straight line with known characteristics. We present a new algorithm that solves this problem, whose correctness is proved. Its principle is to climb the Stern-Brocot tree of fraction in a bottom-up way. Its worst-time complexity is proportionnal to the difference of depth of the slope of the input line and the slope of the output segment. It is thus logarithmic in the coefficients of the input slope. We have tested the effectiveness of this algorithm by computing a multiscale representation of a digital shape, based only on a digital straight segment decomposition of its boundary.

Keywords

standard lines digital straight segment recognition Stern-Brocot tree 

References

  1. 1.
    Anderson, T.A., Kim, C.E.: Representation of digital line segments and their preimages. Computer Vision, Graphics, and Image Processing 30(3), 279–288 (1985)CrossRefzbMATHGoogle Scholar
  2. 2.
    Debled-Rennesson, I.: Etude et reconnaissance des droites et plans discrets. Ph.D. thesis, Université Louis Pasteur, Strasbourg (1995)Google Scholar
  3. 3.
    Debled-Rennesson, I., Reveillès, J.P.: A linear algorithm for segmentation of discrete curves. International Journal of Pattern Recognition and Artificial Intelligence 9, 635–662 (1995)CrossRefGoogle Scholar
  4. 4.
    Dorst, L., Smeulders, A.W.M.: Discrete representation of straight lines. IEEE transactions Pattern Analysis Machine Intelligence 6, 450–463 (1984)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dorst, L., Smeulders, A.W.M.: Discrete straight line segments: Parameters, primitives and properties. In: Vision Geometry, Series Contemporary Mathematics, pp. 45–62. American Mathematical Society, Providence (1991)CrossRefGoogle Scholar
  6. 6.
    Freeman, H.: On the encoding of arbitrary geometric configurations. Transactions on Electronic Computer 10(2), 260–268 (1961)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Freeman, H.: Computer processing of line-drawing images. ACM Comput. Surv. 6(1), 57–97 (1974)CrossRefzbMATHGoogle Scholar
  8. 8.
    Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  9. 9.
    Klette, R., Rosenfeld, A.: Digital straightness–a review. Discrete Applied Mathematics 139(1-3), 197–230 (2004), http://www.sciencedirect.com/science/article/B6TYW-49YD4PJ-4/2/8a755750eee9d6517adbff2f20ee7dc2, the 2001 International Workshop on Combinatorial Image AnalysisMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kovalevsky, V.: Applications of digital straight segments to economical image encoding. In: Ahronovitz, E. (ed.) DGCI 1997. LNCS, vol. 1347, pp. 51–62. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    Kovalevsky, V.A.: New definition and fast recognition of digital straight segments and arcs. In: International Conference on Pattern Analysis and Machine Intelligence, pp. 31–34 (1990)Google Scholar
  12. 12.
    Kovalevsky, V.A., Fuchs, S.: Theoretical and experimental analysis of the accuracy of perimeter estimates. In: Forster, W., Ruwiedel, S. (eds.) Robust Computer Vision, pp. 218–242 (1992)Google Scholar
  13. 13.
    Montanari, U.: A note on minimal length polygonal approximation to a digitized contour. Communications of the ACM 13(1), 41–47 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Said, M., Lachaud, J.-O., Feschet, F.: Multiscale Discrete Geometry. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 118–131. Springer, Heidelberg (2009), http://hal.archives-ouvertes.fr/hal-00413681/en/ CrossRefGoogle Scholar
  15. 15.
    Sivignon, I., Dupont, F., Chassery, J.M.: Digital intersections: minimal carrier, connectivity, and periodicity properties. Graphical Models 66(4), 226–244 (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Troesch, A.: Interprétation géométrique de l’algorithme d’euclide et reconnaissance de segments. Theor. Comput. Sci. 115(2), 291–319 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    de Vieilleville, F., Lachaud, J.O.: Revisiting digital straight segment recognition. In: Kuba, A., Palágyi, K., Nyúl, L.G. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 355–366. Springer, Heidelberg (2006), http://www.lama.univ-savoie.fr/~lachaud/Publications/LACHAUD-JO/publications.html#deVieilleville06a CrossRefGoogle Scholar
  18. 18.
    Yaacoub, J.: Enveloppes convexes de réseaux et applications au traitement d’images. Ph.D. thesis, Université Louis Pasteur, Strasbourg (1997), http://lsiit.u-strasbg.fr/Publications/1997/Yaa97

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mouhammad Said
    • 1
    • 2
  • Jacques-Olivier Lachaud
    • 1
  1. 1.Laboratoire de Mathématiques, UMR 5127 CNRSUniversité de SavoieLe Bourget du LacFrance
  2. 2.IUTLAIC, Univ. Clermont-FerrandAubière CedexFrance

Personalised recommendations