Advertisement

Delaunay Properties of Digital Straight Segments

  • Tristan Roussillon
  • Jacques-Olivier Lachaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)

Abstract

We present new results concerning the Delaunay triangulation of the set of points of pieces of digital straight lines. More precisely, we show how the triangulation topology follows the arithmetic decomposition of the line slope as well as its combinatorial decomposition (splitting formula). A byproduct is a linear time algorithm for computing the Delaunay triangulation and the Voronoi diagram of such sets.

Keywords

Lattice Point Voronoi Diagram Delaunay Triangulation Simple Polygon Continue Fraction Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chaussard, J., Couprie, M., Talbot, H.: A discrete λ-medial axis. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 421–433. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Chazal, F., Lieutier, A.: The λ-medial axis. Graph. Models 67(4), 304–331 (2005)CrossRefzbMATHGoogle Scholar
  3. 3.
    Davenport, H.: The Higher Arithmetic. Cambridge University Press, Cambridge (1992)zbMATHGoogle Scholar
  4. 4.
    Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the Shape of a Set of Points in the Plane. IEEE Trans. on IT 29(4), 551–559 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Klette, R., Rosenfeld, A.: Digital straightness – a review. Discrete Applied Mathematics 139(1-3), 197–230 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Mérigot, Q., Ovsjanikov, M., Guibas, L.: Robust voronoi-based curvature and feature estimation. In: Proc. SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM 2009), pp. 1–12. ACM, New York (2009)Google Scholar
  7. 7.
    Preparata, F.P., Shamos, M.I.: Computational geometry: an introduction. Springer, Heidelberg (1985)CrossRefzbMATHGoogle Scholar
  8. 8.
    Provençal, X., Lachaud, J.O.: Two linear-time algorithms for computing the minimum length polygon of a digital contour. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 104–117. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’etat, Université Louis Pasteur, Strasbourg, France (1991) (in french)Google Scholar
  10. 10.
    Voss, K.: Discrete Images, Objects, and Functions in ℤn. Springer, Heidelberg (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tristan Roussillon
    • 1
  • Jacques-Olivier Lachaud
    • 2
  1. 1.LIRIS, UMR5205Université de Lyon, Université Lyon 2France
  2. 2.LAMA, UMR CNRS 5127Université de SavoieLe Bourget-du-LacFrance

Personalised recommendations