Properties and Applications of the Simplified Generalized Perpendicular Bisector

  • Aurélie Richard
  • Gaëlle Largeteau-Skapin
  • Marc Rodríguez
  • Eric Andres
  • Laurent Fuchs
  • Jean-Serge Dimitri Ouattara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)


This paper deals with the Simplified Generalized Perpendicular Bisector (SGBP) presented in [15,1]. The SGPB has some interesting properties that we explore. We show in particular that the SGPB can be used for the recognition and exhaustive parameter estimation of noisy discrete circles. A second application we are considering is the error estimation for a class of rotation reconstruction algorithms.


Simplified Generalized Perpendicular Bisector Adaptive Pixel Size Generalized Reflection Symmetry Rotation Reconstruction 


  1. 1.
    Andres, E., Largeteau-Skapin, G., Rodríguez, M.: Generalized perpendicular bisector and exhaustive discrete circle recognition (2010) (submitted for publication at Graphical Models)Google Scholar
  2. 2.
    Aragon-Gonzalez, G., Aragon, J.L., Rodriguez-Andrade, M.A., Verde-Star, L.: Reflections, rotations, and pythagorean numbers, vol. 19, pp. 1–14 (2009)Google Scholar
  3. 3.
    Audin, M.: Geometry, pp. 46–49. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cheng, P.: Joint rotation between two attitudes in the spherical rotation coordinate system, vol. 37, pp. 1475–1482 (2004)Google Scholar
  5. 5.
    Couprie, M., Coeurjolly, D., Zrour, R.: Discrete bisector function and Euclidean skeleton in 2D and 3D. Image and Vision Computing 25(10), 1543–1556 (2007)CrossRefGoogle Scholar
  6. 6.
    Dexet, M.: Architecture d’un modeleur discret à base topologique d’objets discret et méthodes de reconstruction en dimensions 2 et 3. Ph.D. thesis, Université de Poitiers (2006)Google Scholar
  7. 7.
    Farouki, R.T., Johnstone, J.K.: Computing point/curve and curve/curve bisectors. In: Fisher, R.B. (ed.) The Mathematics of Surfaces V, pp. 327–354. Oxford University, Oxford (1994)Google Scholar
  8. 8.
    Fontijne, D., Dorst, L.: Reconstructing rotations and rigid body motions from points correspondences as a sequence of reflections. In: Applied Geometric Algebras in Computer Science and Engineering, AGACSE 2010, Amsterdam, The Netherlands (June 14-16, 2010)Google Scholar
  9. 9.
    Gebken, C., Perwass, C., Sommer, G.: Parameter estimation from uncertain data in geometric algebra. Advances in Applied Clifford Algebra 18, 647–664 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kerautret, B., Lachaud, J.-O.: Multi-scale analysis of discrete contours for unsupervised noise detection. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 187–200. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Peternell, M.: Geometric properties of bisector surfaces. Graphical Models 62(3), 202–236 (2000)CrossRefGoogle Scholar
  12. 12.
    Richard, A., Fuchs, L., Andres, E., Largeteau-Skapin, G.: Decomposition of nD-rotations: classification, properties and algorithm (2010) (submitted for publication at Graphical Models)Google Scholar
  13. 13.
    Richard, A., Fuchs, L., Charneau, S.: An algorithm to decompose n-dimensional rotations into planar rotations. In: Barneva, R., Brimkov, V., Hauptman, H., Natal Jorge, R., Tavares, J. (eds.) CompIMAGE 2010. LNCS, vol. 6026, pp. 60–71. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Rodríguez, M., Largeteau-Skapin, G., Andres, E.: Adaptive pixel resizing for multiscale recognition and reconstruction. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 252–265. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Rodríguez, M., Sere, A., Largeteau-Skapin, G., Andres, E.: Generalized perpendicular bisector and circumcenter. In: Barneva, R., Brimkov, V., Hauptman, H., Natal Jorge, R., Tavares, J. (eds.) CompIMAGE 2010. LNCS, vol. 6026, pp. 1–10. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Talbot, H., Vincent, L.: Euclidean skeletons and conditional bisectors. In: SPIE, vol. 1818, pp. 862–876 (1992)Google Scholar
  17. 17.
    Watson, G.: Computing Helmert transformations, vol. 197, pp. 387–394 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Aurélie Richard
    • 1
  • Gaëlle Largeteau-Skapin
    • 1
  • Marc Rodríguez
    • 1
  • Eric Andres
    • 1
  • Laurent Fuchs
    • 1
  • Jean-Serge Dimitri Ouattara
    • 1
  1. 1.Laboratory XLIM, SIC DepartmentUniversity of Poitiers BP 30179, UMR CNRS 6712Futuroscope Chasseneuil CedexFrance

Personalised recommendations